Advertisement

Journal of Superconductivity

, Volume 12, Issue 6, pp 747–755 | Cite as

Highly Sensitive Electrometers Based on Single Cooper Pair Tunneling

  • A. B. Zorin
  • S. V. Lotkhov
  • Yu. A. Pashkin
  • H. Zangerle
  • V. A. Krupenin
  • T. Weimann
  • H. Scherer
  • J. Niemeyer
Article

Abstract

A superconducting transistor structure comprising two Josephson tunnel junctions connected in series and a small island in between, which is capacitively coupled to a gate, is considered. When self-capacitances of the junctions are sufficiently small that the corresponding charging energy E c is of the order of magnitude of the Josephson coupling strength EJ (and both are ≫kBT), the interplay of the charging and Josephson effects in the circuit becomes essential. This leads to a characteristic IV curve which can be effectively modulated by the gate in two limit cases of external electrodynamic impedance Z s (ω): (a) Z s = R s R Q ≈ 6.5 kΩ and (b) R s R Q . Both circuits can serve as electrometers which are competitive with traditional single-electron devices. Preliminary experimental results are discussed.

Coulomb and Josephson effects thermal and quantum fluctuations ultrasmall tunnel junctions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Grabert and M. H. Devoret, eds., Single Charge Tunneling. Coulomb Blockade Phenomena in Nanostructures, NATO ASI Series. Series B: Physics, 294 (Plenum Press, New York, 1992).Google Scholar
  2. 2.
    T. A. Fulton and G. J. Dolan, Phys. Rev. Lett. 59, 109 (1987).PubMedGoogle Scholar
  3. 3.
    A. N. Korotkov, D. V. Averin, K. K. Likharev, and S. A. Vasenko, in Single Electron Tunneling and Mesoscopic Devices, H. Koch and H. Lübbig, eds. Berlin, (Springer-Verlag, 1992).Google Scholar
  4. 4.
    B. Starmark, P. Delsing, D. B. Haviland, and T. Claeson, in 6th Int. Superconductive Electronics Conf., 25–28 June 1997, Berlin, Germany, H. Koch and S. Knappe, eds., 2, 391.Google Scholar
  5. 5.
    E. H. Visscher, S. M. Verbrugh, J. Lindeman, P. Hadley, J. E. Mooij, and W. van der Vleuten, Appl. Phys. Lett. 68, 2014 (1996); J. Pettersson, P. Wahlgren, P. Delsing, N. Rorsman, D. B. Haviland, H. Zirath, and T. Claeson, Phys. Rev. B, 53, R13272 (1996).Google Scholar
  6. 6.
    R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnokov, P. Delsing, and D. E. Prober, Science 280, 1238 (1998).PubMedGoogle Scholar
  7. 7.
    A. B. Zorin, Phys. Rev. Lett. 76, 4408 (1996).PubMedGoogle Scholar
  8. 8.
    A. B. Zorin, IEEE Trans. Instrum. Means. 46, 299 (1997).Google Scholar
  9. 9.
    A. B. Zorin, Yu. A. Pashkin, V. A. Krupenin, and H. Scherer, in 6th Int. Superconductive Electronics Conf., 25–28 June 1997, Berlin, Germany, H. Koch and S. Knappe, eds., 2, 394.Google Scholar
  10. 10.
    A. B. Zorin, L. S. Kuzmin, and K. K. Likharev, Physica B 165, 166, 933 (1990).Google Scholar
  11. 11.
    D. V. Averin and Yu. V. Nazarov, Phys. Rev. Lett. 69, 1993 (1992); M. T. Tuominen, J. M. Hergenrother, T. S. Tighe, and M. Tinkham, Phys. Rev. Lett. 69, 1997 (1992).PubMedGoogle Scholar
  12. 12.
    P. Joyez, Ph.D. thesis, University of Paris 6 (1995).Google Scholar
  13. 13.
    K. K. Likharev and A. B. Zorin, J. Low Temp. Phys. 59, 347 (1985).Google Scholar
  14. 14.
    This condition becomes more severe in the limit E J/E C < 1, because the forbidden energy gap (∼E J) shrinks and the probability of transitions into upper bands rises steeply; for details, see A. D. Zaikin and D. S. Golubev, Phys. Lett. A 164, 337 (1992).Google Scholar
  15. 15.
    D. B. Haviland, Yu. A. Pashkin, and L. S. Kuzmin, Physica B 203, 347 (1994).Google Scholar
  16. 16.
    A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982).Google Scholar
  17. 17.
    H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).Google Scholar
  18. 18.
    V. Ambegaokar and B. I. Halperin, Phys. Rev. Lett. 22, 1364 (1969); A. N. Vystavkin, V. N. Gubankov, L. S. Kuzmin, K. K. Likharev, V. V. Migulin, and V. K. Semenov, Rev. Phys. Appl. 9, 79 (1974).Google Scholar
  19. 19.
    K. K. Likharev and V. K. Semenov, JETP Lett. 15, 442 (1972).Google Scholar
  20. 20.
    R. H. Koch, D. J. Van Harlingen, and J. Clarke, Phys. Rev. Lett. 45, 2132 (1980).Google Scholar
  21. 21.
    P. Joyez, P. Lafarge, A. Filipe, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. 72, 2458 (1994).PubMedGoogle Scholar
  22. 22.
    T. M. Eiles and J. M. Martinis, Phys. Rev. B 50, 627 (1994).Google Scholar
  23. 23.
    D. Vion, M. Götz, P. Joyez, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. 77, 3435 (1996); see also V. Bouchiat, Ph.D. thesis, University of Paris 6, 1997.PubMedGoogle Scholar
  24. 24.
    K. K. Likharev, Physics Department, Moscow State University, Moscow, Preprint 29, 1986; see also K. A. Matveev, M. Gisselfät, L. I. Glazman, M. Jonson, and R. I. Shekhter, Phys. Rev. Lett. 70, 2940 (1993).Google Scholar
  25. 25.
    D. V. Averin and K. K. Likharev, in Mesoscopic Phenomena in Solids, B. L. Altshuler, P. A. Lee, and R. A. Webb, eds. (Elsevier, Amsterdam, 1991).Google Scholar
  26. 26.
    K. K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon & Breach, New York, 1986).Google Scholar
  27. 27.
    Note that a self-inductance of the on-chip shunt can be easily made much smaller than the characteristic Josephson inductance = Φ0/2π Ic, so that the former plays no role in the dynamics of φ.Google Scholar
  28. 28.
    P. Walgren, P. Delsing, and D. B. Haviland, Phys. Rev. B 52, R2293 (1995).Google Scholar
  29. 29.
    M. L. Roukes, M. R. Freeman, R. S. Germain, R. C. Richardson, and M. B. Ketchen, Phys. Rev. Lett. 55, 422 (1985).PubMedGoogle Scholar
  30. 30.
    A. Amar, D. Song, C. J. Lobb, and F. C. Wellstood, IEEE Trans. Appl. Supercond. 7, 3544 (1997).Google Scholar
  31. 31.
    This effect is most pronounced at E J/E C∑ < 1, as can be seen in Fig. 2 of [21].Google Scholar
  32. 32.
    R. L. Kautz, G. Zimmerli, and J. M. Martinis, J. Appl. Phys. 73, 2386 (1993).Google Scholar
  33. 33.
    L. S. Kuzmin, Yu. A. Pashkin, A. B. Zorin, and T. Claeson, Physica B 203, 376 (1994).Google Scholar
  34. 34.
    F. C. Wellstood, C. Urbina, and J. Clarke, Phys. Rev. B 49, 5942 (1994).Google Scholar
  35. 35.
    A. H. Steinbach, J. M. Martinis, and M. H. Devoret, Phys. Rev. Lett. 76, 3806 (1996).PubMedGoogle Scholar
  36. 36.
    R. J. Schoelkopf, P. J. Burke, A. A. Kozhevnokov, D. E. Prober, and M. J. Rooks, Phys. Rev. Lett. 78, 3370 (1997).Google Scholar
  37. 37.
    A. B. Zorin, F.-J. Ahlers, J. Niemeyer, T. Weimann, H. Wolf, V. A. Krupenin, and S. V. Lotkhov, Phys. Rev. B 53, 13,682 (1996).Google Scholar
  38. 38.
    V. Bouchiat, G. Chardin, M. H. Devoret, and D. Esteve, Hyperfine Interactions (J. C. Balzer AG, Science Publishers 109, 345 (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • A. B. Zorin
    • 1
  • S. V. Lotkhov
    • 1
  • Yu. A. Pashkin
    • 2
  • H. Zangerle
  • V. A. Krupenin
    • 3
  • T. Weimann
    • 1
  • H. Scherer
    • 1
  • J. Niemeyer
    • 1
  1. 1.Physikalisch-Technische BundesanstaltBraunschweigGermany
  2. 2.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussian Federation
  3. 3.Laboratory of CryoelectronicsMoscow State UniversityMoscowRussian Federation

Personalised recommendations