Advertisement

Journal of Superconductivity

, Volume 12, Issue 1, pp 295–298 | Cite as

Effects of Magnetization on Hole Localization and MnO6 Octahedra Disorder in Hole-Doped Lanthanum Manganese Perovskites

  • C. H. Booth
  • F. Bridges
  • J. J. Neumeier
  • E. L. Brosha
  • T. H. Geballe
  • G. J. Snyder
  • G. H. Kwei
Conference Report

Abstract

We review the distortions of the MnO6 octahedra reduced by magnetization in hole-doped lanthanum manganese perovskites. The systems we consider include the “colossal” magnetoresistance (CMR) samples La1−xCa x MnO3 (x=0.21, 0.25, 0.30), La0.67Ba0.33MnO3, and a poorer quality La0.67Pb0.33MnO3 sample. We also report preliminary work on three samples of oxygen-doped LaMnO3+δ and a lanthanum-deficient La0.9MnO3 sample. We find the same exponential relationship between the removal of the distortion and the sample magnetization in the Ba- and Pb-doped CMR samples as was found previously for the Ca-doped samples. The MnO6 distortion in the oxygen-doped materials is found to slightly reduce below the magnetic transition, although much less so than in the CMR samples. Above Tc, the antiferromagnetic LaMnO3.006 sample shows a softer temperature dependence of the Mn–O bond length distribution broadening. Surprisingly, even this sample shows deviations from thermal (Debye) behavior near TN, possibly due to FM coupling within MnO planes.

X-ray-absorption fine-structure (XAFS) “colossal” magnetoresistance (CMR) Jahn–Teller polarons La1−xAxMnO3 La1−yMnO3+δ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997); A. J. Millis, Nature 392, 147 (1998).Google Scholar
  2. 2.
    C. H. Booth, F. Bridges, G. H. Kwei, J. M. Lawrence, A. L. Cornelius, and J. J. Neumeier, Phys. Rev. Lett. 80, 853 (1998).Google Scholar
  3. 3.
    D. Louca, W. Dmowski, T. Egami, E. L. Brosha, H. Roder, and A. R. Bishop, Phys. Rev. B 56, R8475 (1997).Google Scholar
  4. 4.
    S. J. L. Billinge, R. G. DiFrancesco, G. H. Kwei, J. J. Neumeier, and J. D. Thompson, Phys. Rev. Lett. 77, 715 (1996).PubMedGoogle Scholar
  5. 5.
    C. H. Booth, F. Bridges, G. J. Snyder, and T. H. Geballe, Phys. Rev. B 54, R15606 (1996).Google Scholar
  6. 6.
    C. H. Booth, F. Bridges, G. H. Kwei, J. M. Lawrence, A. L. Cornelius, and J. J. Neumeier, Phys. Rev. B 57, 10440 (1998).Google Scholar
  7. 7.
    A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).PubMedGoogle Scholar
  8. 8.
    M. F. Hundley, M. Hawley, R. H. Heffner, Q. X. Jia, J. J. Neumeier, J. Tesmer, X. D. Wu, and J. D. Thompson, Appl. Phys. Lett. 67, 860 (1995).Google Scholar
  9. 9.
    E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • C. H. Booth
    • 1
  • F. Bridges
    • 2
  • J. J. Neumeier
    • 3
  • E. L. Brosha
    • 1
  • T. H. Geballe
    • 4
  • G. J. Snyder
    • 4
  • G. H. Kwei
    • 1
  1. 1.Los Alamos National LaboratoryLos Alamos
  2. 2.Physics DepartmentUniversity of CaliforniaSanta Cruz
  3. 3.Physics DepartmentFlorida Atlantic UniversityBoca RaconFlorida
  4. 4.Applied Physics DepartmentStanford UniversityStanford

Personalised recommendations