Advertisement

Journal of Theoretical Probability

, Volume 13, Issue 1, pp 1–37 | Cite as

An Empirical Process Approach to the Uniform Consistency of Kernel-Type Function Estimators

  • Uwe Einmahl
  • David M. Mason
Article

Abstract

We use general empirical process methods to determine under mild regularity conditions exact rates of uniform strong consistency of kernel-type function estimators. In the process a useful new bound on the expectation of the supremum of the empirical process is obtained

empirical process strongly consistent estimators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Bosq, D., and Lecoutre, J. P. (1987). Thé orie de l'Estimation Fonctionnelle, Economica, Paris.Google Scholar
  2. 2.
    Chow, Y. S., and Teicher, H. (1988). Probability Theory: Independence, Interchangeability, Martingales, Second Edition, Springer Verlag, New York.CrossRefGoogle Scholar
  3. 3.
    Collomb, G. (1981). Estimation nonparamétrique de la regression: Revue bibliographique. Int'l. Statist. Rev. 49, 75–93.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Deheuvels, P., and Mason, D. M. (1992). Functional laws of the iterated logarithm for the increments of empirical and quantile processes. Ann. Prob. 20, 1248–1287.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Devroye, L. (1981). On the almost everywhere convergence of nonparametric regression function estimates. Ann. Statist. 9, 1310–1319.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Einmahl, U. (1993). Toward a general law of the iterated logarithm in Banach space. Ann. Prob. 21, 2012–2045.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Einmahl, U., and Mason, D. M. (1996). Some universal results on the behavior of the increments of partial sums. Ann. Prob. 24, 1388–1407.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Einmahl, U., and Mason, D. M. (1997). Gaussian approximation of local empirical processes indexed by functions. Prob. Th. Fields 107, 283–311.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Einmahl, U., and Mason, D. M. (1998). Strong approximations to the local empirical process. Birkhaäuser Verlag, Basel, Progress in Probability 43, 75–92.Google Scholar
  10. 10.
    Fuk, D. Kh., and Nagaev, S. V. (1971). Probability inequalities for sums of independent random variables. Theor. Prob. Appl. 16, 643–660.CrossRefGoogle Scholar
  11. 11.
    Giné, E., and Zinn, J. (1984). Some limit theorems for empirical processes. Ann. Prob. 12, 929–989.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Greblicki, W., Krzyźal, A., and Pawlak, M. (1984). Distribution-free pointwise consistency of kernel regression estimates. Ann. Statist. 12, 1570–1575.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Haerdle, W., Janssen, P., and Serfling, R. (1988). Strong uniform consistency rates for estimators of conditional functionals. Ann. Statist. 16, 1428–1449.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jain, M. C., and Marcus, M. B. (1978). Continuity of sub-Gaussian processes, Dekker, New York. Advances in Probability 4, 81–196.Google Scholar
  15. 15.
    Ledoux, M. (1996). On Talagrand's deviation inequalities for product measures. ESAIM: Prob. Statist. 1, 63–87. http//www.emath.fr/ps/.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ledoux, M., and Talagrand, M. (1991). Probability on Banach Spaces, Springer Verlag, Berlin.CrossRefGoogle Scholar
  17. 17.
    Nadaraya, E. A. (1964). On estimating regression. Theor. Prob. Appl. 9, 141–142.CrossRefGoogle Scholar
  18. 18.
    Pollard, D. (1984). Convergence of Stochastic Processes, Springer Verlag, New York.CrossRefGoogle Scholar
  19. 19.
    Stute, W. (1982). A law of the iterated logarithm for kernel density estimators. Ann. Prob. 10, 414–422.CrossRefGoogle Scholar
  20. 20.
    Stute, W. (1986a). Conditional empirical processes. Ann. Statist. 14, 638–647.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Stute, W. (1986b). On almost sure convergence of conditional empirical distribution functions. Ann. Prob. 14, 891–901.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Talagrand, M. (1994). Sharper bounds for Gaussian and empirical processes. Ann. Prob. 22, 28–76.MathSciNetCrossRefGoogle Scholar
  23. 23.
    van der Vaart, A. W., and Wellner, J. A. (1996). Weak Convergence and Empirical Processes, Springer Verlag, New York.CrossRefGoogle Scholar
  24. 24.
    Watson, G. S. (1964). Smooth regression analysis. Sankhyä A 26, 359–372.MathSciNetzbMATHGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Uwe Einmahl
  • David M. Mason

There are no affiliations available

Personalised recommendations