Fish Physiology and Biochemistry

, Volume 18, Issue 4, pp 311–319 | Cite as

Dose-dependent effects of acute melatonin treatments on brain carbohydrate metabolism of rainbow trout

  • J.L. Soengas
  • E.F. Strong
  • M.D. Andrés
  • M. Aldegunde
Article

Abstract

The levels of glycogen, lactate, acetoacetate and β-hydroxybutyrate in brain as well as glycogen and lactate levels in liver, and glucose levels in plasma were evaluated in rainbow trout, Oncorhynchus mykiss, injected with ethanol/saline (5/95; v/v) alone (controls) or containing melatonin at three different doses 0.25, 0.5 and 1 mg kg-1. The results obtained demonstrate, for the first time in a teleost fish, the existence of changes in brain carbohydrate and ketone body metabolism due to melatonin treatment. Thus, a clear dose-dependent decrease was observed in brain and liver glycogen levels, whereas a clear dose-response increase was observed in brain for lactate, acetoacetate and β-hydroxybutyrate levels, and in plasma for glucose levels. CO2 production from glucose was also tested in brains of pooled fish and these rates were not altered by melatonin treatment. Altogether, these results suggest that melatonin may play an indirect role, possibly through alterations in insulin physiology, in the regulation of carbohydrate and ketone body metabolism in brain of rainbow trout.

rainbow trout brain liver melatonin glucose ketone bodies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Acuña, D., Fernández, B., del Aguila, C.M. and Castillo, J.L. 1989. Lessions in suprachiasmatic nuclei simulate effects of pinealectomy on prolactin release in ovariectomized and sulpiride-treated female rats. Experientia 45: 739-742.PubMedGoogle Scholar
  2. Acuña, D., del Aguila, C.M., Fernández, B., Gomar, M.D. and Castillo, J.L. 1991. Pinealectomy increases ouabain high-affinity binding sites and dissociation constant in rat cerebral cortex. Neurosci. Lett. 127: 227-230.PubMedGoogle Scholar
  3. Bayley, C.J., Atkins, T.W. and Matty, A.J. 1974. Melatonin inhibition of insulin secretion in the rat and mouse. Horm. Res. 5: 21-28PubMedGoogle Scholar
  4. Boujard, T. and Leatherland, J.F. 1992. Circadian pattern of hepatosomatic index, liver glycogen and lipid content, plasma non-esterified fatty acid, glucose, T3, T4, growth hormone and cortisol concentrations in Oncorhynchus mykiss held under different photoperiod regimes and fed using demand-feeders. Fish Physiol. Biochem. 10: 111-122.Google Scholar
  5. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.CrossRefPubMedGoogle Scholar
  6. Burns, J.K. 1973. Serum sodium and potassium and blood glucose levels in cynamolgus monkeys after administration of melatonin. J. Physiol. 232: 84P-85PPubMedGoogle Scholar
  7. Delahunty, G. and Tomlinson, M. 1984a. Hypoglycemic effects of melatonin in the goldfish, Carassius auratus. Comp. Biochem. Physiol. 78A: 871-875.Google Scholar
  8. Delahunty, G. and Tomlinson, M. 1984b. Photoperiod independent actions of the pineal organ: Aspects of a pineal organpancreas relationship. Trans. Am. Fish. Soc. 113: 439-443.Google Scholar
  9. Delahunty, G., Bauer, G., Prack, G., Prack, M. and De Vlaming, V. 1978. Effects of pinealectomy and melatonin treatment on liver and plasma metabolites in the goldfish, Carassius auratus. Gen. Comp. Endocrinol. 35: 99-109.PubMedGoogle Scholar
  10. DeRoos, R. 1994. Plasma Ketone, Glucose, Lactate, and Alanine levels in the vascular supply to and from the brain of the spiny dogfish shark (Squalus acanthias). J. Exp. Zool. 268: 354-363.Google Scholar
  11. De Vlaming, V.L. and Olcese, J. 1981. The pineal and reproduction in fish, amphibians, and reptiles. In The Pineal Gland. Vol. II. Reproductive effects. pp. 1-29. Edited by R.J. Reiter. CRC Press, Boca Raton.Google Scholar
  12. Díaz, B. and Blázquez, E. 1986. Effect of pinealectomy on plasma glucose, insulin and glucagon levels in the rat. Horm. Metabol. Res. 18: 225-229.Google Scholar
  13. Dringen, R., Gebhardt, R. and Hamprecht B. 1993. Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res. 623: 208-214.PubMedGoogle Scholar
  14. Ekström, P. and Vanecek, J. 1992. Localization of 2-[125I]iodomelatonin binding sites in the brain of Atlantic salmon, Salmo salar L. Neuroendocrinology 55: 529-537.PubMedGoogle Scholar
  15. Foster, G.D., Youson, J.H. and Moon, T.W. 1993. Carbohydrate metabolism in the brain of the adult lamprey. J. Exp. Zool. 267: 27-32.Google Scholar
  16. Frankel, B.J. and Strandberg, M.J. 1991. Insulin release from isolated mouse islets in vitro: no effect of physiological levels of melatonin or arginine vasotocin. J. Pineal Res. 11: 145-148.PubMedGoogle Scholar
  17. Gutmann, I and Wahlefeld, A.W. 1974. L-(+)-Lactate. Determination with lactate dehydrogenase and NAD. In Methods of Enzymatic Analysis. pp. 1464-1472. Edited by H.U. Bergmeyer. Academic Press, New York.Google Scholar
  18. Hamprecht, B. and Dringen, R. 1995. Energy metabolism. In Neuroglia. pp. 473-487. Edited by H. Kettenmann and B.R. Ramson. Oxford University Press, New York.Google Scholar
  19. Holloway, A.C., Reddy, P.K., Sheridan, M.A. and Leatherland, J.F. 1994. Diurnal rhythms of plasma growth hormone, somatostatin, thyroid hormones, cortisol and glucose concentrations in rainbow trout, Oncorhynchus mykiss, during progressive food deprivation. Biol. Rhythms. Res. 25: 415-432.Google Scholar
  20. Iigo, M., Kobayashi, M., Ohtani-Kanero, R., Hara, M., Hattori, A., Suzuki, T. and Aida, K. 1994. Characteristics, day-night changes, subcellular distribution and localization of melatonin binding sites in the goldfish brain. Brain Res. 644: 213-220.PubMedGoogle Scholar
  21. John, T.M., Viswanathan, M., George, J.C. and Scanes, C.G. 1990. Influence of chronic melatonin implantation on circulating levels of catecholamines, growth hormone, thyroid hormones, glucose, and free fatty acids in the pigeon. Gen. Comp. Endocrinol. 79: 226-232.PubMedGoogle Scholar
  22. Joy, K.P. and Agha, A.K. 1991. Seasonal effects of administration of melatonin and 5-methoxytryptophol on ovarian activity in the catfish Heteropneustes fossilis. J. Pineal Res. 10: 65-70.PubMedGoogle Scholar
  23. Kavaliers, M. 1989. Day-night rhythms of shoaling behavior in goldfish: opiod and pineal involvement. Physiol. Behav. 46: 167-172.PubMedGoogle Scholar
  24. Keppler, D. and Decker, K. 1974. Glycogen. Determination with amyloglucosidase. In Methods of Enzymatic Analysis. pp. 1127-1131. Edited by H.U. Bergmeyer. Academic Press, New York.Google Scholar
  25. Laidley, C.W. and Leatherland, J.F. 1988. Circadian studies of plasma cortisol, thyroid hormone, protein, glucose and ion concentration, liver glycogen concentration and liver and spleen weight in rainbow trout Salmo gairdneri Richardson. Comp. Biochem. Physiol. 89A: 495-502.Google Scholar
  26. Mellado, C., Rodriguez, V., De Diego, J.G., Alvarez, E. and Blazquez, E. 1989. Effect of pinealectomy and of diabetes on liver insulin and glucagon receptor concentrations in the rat. J. Pineal Res. 6: 295-306.PubMedGoogle Scholar
  27. Mellanby, J. and Williamson, D.H. 1974. Acetoacetate. In Methods of Enzymatic Analysis. pp. 1841-1843. Edited by H.U. Bergmeyer. Academic Press, New York.Google Scholar
  28. Navarro, I., Carneiro, N.M., Párrizas, M., Maestro, J.L., Planas, J. and Gutiérrez, J. 1993. Post-feeding levels of insulin and glucagon in trout (Salmo trutta fario) Comp. Biochem. Physiol. 104A: 389-393.Google Scholar
  29. Nayak, P.K. and Singh, T.P. 1987. Effect of pincalectomy on thyroid hormone (T4 and T3) levels in plasma during the annual reproductive cycle in the freshwater catfish, Clarias batrachus. J. Pineal Res. 4: 387-394.PubMedGoogle Scholar
  30. Plisetskaya, E.M., Bondareva, V.M., Duan, C., and Duguay, S.J. 1993. Does salmon brain produce insulin? Gen Comp. Endocrinol. 91: 74-80.PubMedGoogle Scholar
  31. Randall, C.F., Bromage, N.R., Thorpe, J.E. and Miles, M.S. 1994. Photoperiod, melatonin and the timing of smoltification in salmonid fish. Aquaculture 121: 295.Google Scholar
  32. Soengas, J.L. and Moon, T.W. 1995. Uptake and metabolism of glucose, alanine and lactate by red blood cells of the American eel, Anguilla rostrata. J. Exp. Biol. 198: 877-888.PubMedGoogle Scholar
  33. Soengas, J.L., Strong, E.F., Fuentes, J., Aldegunde, M. and Andrés, M.D. 1996a. Postfeeding carbohydrate and ketone bodies metabolism in brain and liver of Atlantic salmon. J. Physiol. Biochem. 52: 131-142.Google Scholar
  34. Soengas, J.L., Strong, E.F., Fuentes, J., Veira, J.A.R. and Andrés, M.D.1996b. Food deprivation and refeeding in Atlantic salmon, Salmo salar: Effects on brain and liver carbohydrate and ketone bodies metabolism. Fish Physiol Biochem. 15: 491-511.Google Scholar
  35. Underwood, H.1989. The pineal and melatonin: regulators of circadian function in lower vertebrates. Experientia 45: 914-922.Google Scholar
  36. Vicario, C., Arizmendi, C., Malloch, G., Clark, J.B. and Medina, J.M. 1991. Lactate utilization by isolated cells from early neonatal rat braín, J. Neurochem. 57: 1700-1707.PubMedGoogle Scholar
  37. Walz, W. and Mukerji, S. 1988a. Lactate production and release in cultured astrocytes. Neurosci. Lett. 86: 296-300.PubMedGoogle Scholar
  38. Walz, W. and Mukerji, S. 1988b. Lactate release from cultured astrocytes and neurons: a comparison. Glia 1: 366-370.PubMedGoogle Scholar
  39. Williamson, D.H. and Mellanby, J.1974. D-(-)-3-Hydroxybutyrate. In Methods of Enzymatic Analysis. pp. 1836-1839. Edited by H.U. Bergmeyer. Academic Press, New York.Google Scholar
  40. Zachmann, A., Ather-Ali, M. and Falcón, J. 1992. Melatonin and its effects in fishes: an overview. In Rhythms in Fishes. pp. 149-166. Edited by M.A. Ali. Plenum Press, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • J.L. Soengas
  • E.F. Strong
  • M.D. Andrés
  • M. Aldegunde

There are no affiliations available

Personalised recommendations