Journal of Productivity Analysis

, Volume 11, Issue 1, pp 93–97 | Cite as

Of Course We Can Bootstrap DEA Scores! But Does It Mean Anything? Logic Trumps Wishful Thinking

  • Léopold Simar
  • Paul W. Wilson


Wishful Thinking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Färe, R. (1988). Fundamentals of Production Theory. Berlin: Springer Verlag.Google Scholar
  2. Fére, R., S. Grosskopf, and C. A. K. Lovell. (1985). The Measurement of Efficiency of Production. Boston: Kluwer-Nijhoff Publishing.Google Scholar
  3. Ferrier, G. D., and J. G. Hirschberg. (1997). “Bootstrapping Confidence Intervals for Linear Programming Efficiency Scores: With an Illustration Using Italian Bank Data.” Journal of Productivity Analysis 8, 19–33.Google Scholar
  4. Ferrier, G. D., and J. G. Hirschberg. (1998). “Can We Bootstrap DEA Scores?” Journal of Productivity Analysis forthcoming.Google Scholar
  5. Kneip, A., Park, B. U., and L. Simar. (1998). “A Note on the Convergence of Nonparametric DEA Efficiency Measures.” Econometric Theory 14, 783–793.Google Scholar
  6. Korostelev, A. P., L. Simar, and A. B. Tsybakov. (1995). “On Estimation of Monotone and Convex Boundaries.” Publications de l'Institut de Statistique de l'Université de Paris XXXIX 1, 3–18.Google Scholar
  7. Simar, L. and P. W. Wilson. (1998a). “Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models.” Management Science 44, 49–61.Google Scholar
  8. Simar, L., and P. W. Wilson. (1998b). “Some Problems with the Ferrier/Hirschberg Bootstrap Idea.” Journal of Productivity Analysis forthcoming.Google Scholar
  9. Shephard, R. W. (1970). Theory of Cost and Production Functions. Princeton: Princeton University Press.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Léopold Simar
    • 1
  • Paul W. Wilson
    • 2
  1. 1.Institut de Statistique and COREUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Department of EconomicsUniversity of TexasAustinUSA

Personalised recommendations