Journal of Productivity Analysis

, Volume 8, Issue 1, pp 95–110 | Cite as

A Graph-Type Extension of Farrell Technical Efficiency Measure

  • W. Briec


We have two goals we wish to accomplish in this article. The first is the development of a framework for measuring efficiency in the full input–output space. This approach introduces a graph-type extension of the Farrell measure of technical efficiency. The second is the introduction of a weighting scheme for inputs and outputs, taking account of the particularity of the market summarized by input and output prices.

Technical efficiency production proportional distance graph measure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banker, R. D., A. Charnes, and W. W. Cooper. (1964). “Some Models for Estimating Technical and Scale Efficiency in Data Envelopment Analysis.” Management Science 30, 1078-1092.Google Scholar
  2. Banker, R. D., and R. C. Morey. (1986). “Efficiency Analysis for Exogenously Fixed Inputs and Outputs.” Operation Research 34, 513-552.Google Scholar
  3. Briec, W. (1995a). “Minimum Distance to the Complement of a Convex Set: Duality result.” Forthcoming in Journal of Optimisation Theory and Application.Google Scholar
  4. Briec, W. (1995b). “An Extended Färe-Lovell Technical Efficiency Measure.” Working paper, GREQAM, n°95A29.Google Scholar
  5. Briec, W. (1995c). Une nouvelle approache de la mesure de l'efficacité productive. PhD dissertation, Ecole des Hautes Etudes en Sciences Sociales-GREQAM.Google Scholar
  6. Briec, W., and B. Lemaire. (1995). “Technical Efficiency and Distance to Reverse Convex Set.” Working Paper.Google Scholar
  7. Chambers, R., Y. Chung, and R. Färe. (1995). “Benefit and Distance Functions.” Forthcoming in Journal of Economic Theory.Google Scholar
  8. Charnes, A., W. W. Cooper, and E. Rhodes. (1978). “Measuring the Efficiency of Decision-Making Units.” European Journal of Operational Research 3, 429-444.Google Scholar
  9. Debreu, G. (1951). “The Coefficient of Resource Utilization.” Econometrica 19, 273-292.Google Scholar
  10. Eichhorn, W., and J. Voeller. (1976). Theory of Price Index: Fisher's Test Approach and Generalizations (Lecture Notes in Operations Research and Mathematical Systems, Vol. 140). Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
  11. Färe, R., S. Grosskopf, and C. A. K. Lovell. (1985). The Measurement of Efficiency of Production. Boston: Kluwer Nijhof Publishers.Google Scholar
  12. Färe, R., S. Grosskopf, and C. A. K. Lovell. (1994). Production Frontiers. Cambridge, England: Cambridge University Press.Google Scholar
  13. Färe, R., S. Grosskopf, C. A. K. Lovell, and C. Pasurka. (1989). “Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach.” Review of Economics and Statistics 71:1, 90-98.Google Scholar
  14. Färe, R., and C. A. K. Lovell. (1978). “Measuring the Technical Efficiency of Production.” Journal of Economic Theory 19, 150-162.Google Scholar
  15. Färe, R., and L. Svensson. (1980). “Congestion of Production Factors.” Econometrica 48, 1745-1753.Google Scholar
  16. Farrell, M. J. (1957). “The Measurement of Productive Efficiency.” Journal of the Royal Statistical Society 120, 253-281.Google Scholar
  17. Grosskopf, S. (1986). “The Role of the Reference Technology in Measuring Productive Efficiency.” The Economic Journal 96, 499-513.Google Scholar
  18. Koopmans, T. C. (1951). “Analysis of Production as an Efficient Combination of Activities.” In T. C. Koopmans (ed.), Activity Analysis of Production and Allocation.Google Scholar
  19. Luenberger, D. G. (1992a). “Benefit Function and Duality.” Journal of Mathematical Economics 21, 461-481.Google Scholar
  20. Luenberger, D. G. (1992b). “New Optimality Principles for Economic Efficiency and Equilibrium.” Journal of Optimization Theory and Application 75, 211-264.Google Scholar
  21. Luenberger, D. G. (1994a). “Dual Pareto Efficiency.” Journal of Economic Theory 62, 70-85.Google Scholar
  22. Luenberger, D. G. (1994b). “Optimality and the Theory of Value.” Journal of Economic Theory 63, 147-169.Google Scholar
  23. Luenberger, D. G. (1995). Microeconomic Theory. Boston: McGraw-Hill.Google Scholar
  24. Malmquist, S. (1953). “Index Numbers and Indifferences Surfaces.” Trabajos de Estadistica 4, 209-242.Google Scholar
  25. Russell, R. R. (1985). “Measures of Technical Efficiency.” Journal of Economic Theory 35, 109-126.Google Scholar
  26. Russell, R. R. (1988). “On the Axiomatic Approach to the Measurement of Technical Efficiency.” In Measurement in Economics. Heidelberg: Physica-Verlag.Google Scholar
  27. Russell, R. R. (1990). “Continuity of Measures of Technical Efficiency.” Journal of Economic Theory 51, 255-267.Google Scholar
  28. Seiford, L. M. (1989). “A Bibliography of Data Envelopment Analysis (1978–1989).” DEA Bibliography 5.0, University of Massachussetts, Amherst, Department of Industrial Engineering and Operations Research.Google Scholar
  29. Seiford, L. M. (1990). “Recent Developments in DEA: The Mathematical Programming Approach to Frontier Analysis.” Journal of Econometrics 46, 7-38.Google Scholar
  30. Shephard, R. W. (1953). Cost and Production Functions. Princeton, NJ: Princeton University Press.Google Scholar
  31. Shephard, R. W. (1970). Theory of Cost and Production Functions. Princeton, NJ: Princeton University Press.Google Scholar
  32. Shephard, R. W. (1974). “Semi-Homogeneous Production Functions and Scaling of Production.” In W. Eichhorn, R. Henn, O. Opitz, and R. W. Shephard (eds.), Production Theory. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
  33. Tulkens, H., and P. Vanden Eeckaut. (1991). “Non-Parametric Efficiency Measurements for Panel Data: Methodologies and an FDH Application to Retail Banking Aspects.” Paper presented at EUROXI and CORE Discussion Paper.Google Scholar
  34. Zieschang, K. (1984). “An Extended Farrell Technical Efficiency Measure.” Journal of Economic Theory 33(2), 387-396.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • W. Briec
    • 1
  1. 1.Institut de Gestion de Rennes (IGR-IAE) and GREQAMMaitre de Conférences en Economie Mathématique à l'Université de Rennes 1Rennes (France

Personalised recommendations