Advertisement

Journal of Superconductivity

, Volume 12, Issue 6, pp 707–718 | Cite as

Quantum Error Correction and Reversible Operations

  • Carlton M. Caves
Article

Abstract

This article gives a pedagogical account of Shor's nine-bit code for correcting arbitrary errors on single qubits and reviews work that determines when it is possible to maintain quantum coherence by reversing the deleterious effects of open-system quantum dynamics. The review provides an opportunity to introduce an efficient formalism for handling superoperators. Some bounds on entanglement fidelity, which might prove useful in analyses of approximate error correction, are presented and proved.

quantum information quantum computation decoherence superoperators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).Google Scholar
  2. 2.
    D. Dieks, Phys. Lett. A 92, 271 (1982).Google Scholar
  3. 3.
    A. M. Steane, Rep. Prog. Phys. 61, 117 (1998).Google Scholar
  4. 4.
    P. W. Shor, Phys. Rev. A 24, R2493 (1995).Google Scholar
  5. 5.
    R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Phys. Rev. Lett. 77, 198 (1996).PubMedGoogle Scholar
  6. 6.
    A. M. Steane, Phys. Rev. Lett. 77, 793 (1996).PubMedGoogle Scholar
  7. 7.
    A. Steane, Proc. Roy. Soc. London A 452, 2551 (1996).Google Scholar
  8. 8.
    A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098 (1996).PubMedGoogle Scholar
  9. 9.
    D. Gottesman, Phys. Rev. A 54, 1862 (1996).PubMedGoogle Scholar
  10. 10.
    B. Schumacher and M. A. Nielsen, Phys. Rev. A 54, 2629 (1996).PubMedGoogle Scholar
  11. 11.
    C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996).PubMedGoogle Scholar
  12. 12.
    E. Knill and R. Laflamme, Phys. Rev. A 55, 900 (1997).Google Scholar
  13. 13.
    D. Gottesman, Phys. Rev. A 57, 127 (1998).Google Scholar
  14. 14.
    J. Preskill, Proc. Roy. Soc. London A 454, 385 (1998).Google Scholar
  15. 15.
    E. Knill, R. Laflamme, and W. H. Zurek, Science 279, 342 (1998).Google Scholar
  16. 16.
    B. Schumacher, Phys. Rev. A 54, 2615 (1996).Google Scholar
  17. 17.
    K.-E. Hellwig and K. Kraus, Commun. Math. Phys. 11, 214 (1969).Google Scholar
  18. 18.
    K.-E. Hellwig and K. Kraus, Commun. Math. Phys. 16, 142 (1970).Google Scholar
  19. 19.
    K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory (Springer, Berlin, 1983).Google Scholar
  20. 20.
    L. P. Hughston, R. Jozsa, and W. K. Wootters, Phys. Lett. A 183, 14 (1993).Google Scholar
  21. 21.
    M.-D. Choi, Linear Alg. Appl. 10, 285 (1975).Google Scholar
  22. 22.
    M. A. Nielsen and C. M. Caves, Phys. Rev. A 55, 2547 (1997).Google Scholar
  23. 23.
    M. A. Nielsen, C. M. Caves, B. Schumacher, and H. Barnum, Proc. Roy. Soc. London A 454, 277 (1998).Google Scholar
  24. 24.
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 1993).Google Scholar
  25. 25.
    A. Wehrl, Rev. Mod. Phys. 50, 221 (1978).Google Scholar
  26. 26.
    C. M. Caves and P. D. Drummond, Rev. Mod. Phys. 66, 481 (1994).Google Scholar
  27. 27.
    A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications (Academic, New York, 1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Carlton M. Caves
    • 1
  1. 1.Center for Advanced Studies, Department of Physics and AstronomyUniversity of New MexicoAlbuquerque

Personalised recommendations