Advertisement

Neurochemical Research

, Volume 25, Issue 9–10, pp 1257–1263 | Cite as

Molecular Signals for Development of Neuronal Circuitry in the Retina

  • Rajesh K. Sharma
  • Dianna A. Johnson
Article

Abstract

In this review article, we summarize recently accumulated knowledge regarding the molecular mechanisms, which control retinal development. Retinal neurons are born in two waves of cytogenesis. In the first wave, neurons of cone circuitry are generated, whereas in the second wave, rod circuitry is added. Neurons generated in these two waves of cytogenesis differ in many respects, including the molecular cues used for migrational guidance. The neurons generated in the second phase of proliferation are arranged in radial columns associated with Müller cells, whereas those of the first phase are often found outside the radial columns. Certain early born cone photoreceptors may form templates for the arrangement of additional mosaics of other cell types. These mosaic arrangements of cell bodies are subsequently refined by lateral displacement of cells and apoptosis. Müller cells may play an important role in directing migration of second phase neurons within groups of radial columns and also in guiding the projections of these neurons so that specific connections are formed. The Müller cell's ability to exert these influences perhaps resides in a variety of cell adhesion molecules such as L1/NgCAM, F11, and 5A11, which are expressed on the surface of Müller cells and retinal neurons. CAMs also promote neurite outgrowth through second messenger pathways.

Retina development Müller cells lamination CAM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Honda, H., Tanemura, M., and Yoshida, A. 1990. Estimation of neuroblast numbers in insect neurogenesis using the lateral inhibition hypothesis of cell differentiation. Development 110:1349-1352.Google Scholar
  2. 2.
    Stenkamp, D. L., Hisatomi, O., Barthel, L. K., Tokunaga, F., and Raymond, P. A. 1996. Temporal expression of rod and cone opsins in embryonic goldfish retina predicts the spatial organization of the cone mosaic. Invest Ophthalmol. Vis. Sci. 37:363-376.Google Scholar
  3. 3.
    Wikler, K. C. and Rakic, P. 1991. Relation of an array of early-differentiating cones to the photoreceptor mosaic in the primate retina. Nature 351:397-400.Google Scholar
  4. 4.
    Wikler, K. C., Rakic, P., Bhattacharyya, N., and Macleish, P. R. 1997. Early emergence of photoreceptor mosaicism in the primate retina revealed by a novel cone-specific monoclonal antibody. J. Comp. Neurol. 377:500-508.Google Scholar
  5. 5.
    Reichenbach, A. and Robinson, S. R. 1995. Phylogenetic Constraints on Retinal Organisation and Development. Progress in Retinal and Eye Research 15:139-171.Google Scholar
  6. 6.
    Reese, B. E., Necessary, B. D., Tam, P. P., Faulkner-Jones, B., and Tan, S. S. 1999. Clonal expansion and cell dispersion in the developing mouse retina. Eur. J. Neurosci. 11:2965-2978.Google Scholar
  7. 7.
    Reese, B. E., Harvey, A. R., and Tan, S. S. 1995. Radial and tangential dispersion patterns in the mouse retina are cell-class specific. Proc. Natl. Acad. Sci. USA 92:2494-2498.Google Scholar
  8. 8.
    Straznicky, C. and Chehade, M. 1987. The formation of the area centralis of the retinal ganglion cell layer in the chick. Development 100:411-420.Google Scholar
  9. 9.
    Galli-Resta, L., Resta, G., Tan, S. S., and Reese, B. E. 1997. Mosaics of islet-1-expressing amacrine cells assembled by short-range cellular interactions. J. Neurosci. 17:7831-7838.Google Scholar
  10. 10.
    Jeyarasasingam, G., Snider, C. J., Ratto, G. M., and Chalupa, L. M. 1998. Activity-regulated cell death contributes to the formation of ON and OFF alpha ganglion cell mosaics. J. Comp. Neurol. 394: 335-343.Google Scholar
  11. 11.
    Rakic, P. 1972. Extrinsic cytological determinants of basket and stellate cell dendritic pattern in the cerebellar molecular layer. J. Comp. Neurol. 146:335-354.Google Scholar
  12. 12.
    Luskin, M. B., Pearlman, A. L., and Sanes, J. R. 1988. Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1:635-647.Google Scholar
  13. 13.
    Leber, S. M., Breedlove, S. M., and Sanes, J. R. 1990. Lineage, arrangement, and death of clonally related motoneurons in chick spinal cord. J. Neurosci. 10:2451-2462.Google Scholar
  14. 14.
    Gray, G. E. and Sanes, J. R. 1991. Migratory paths and phenotypic choices of clonally related cells in the avian optic tectum. Neuron 6:211-225.Google Scholar
  15. 15.
    Hatten, M. E. 1990. Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain. Trends Neurosci. 13:179-184.Google Scholar
  16. 16.
    Hatten, M. E. 1993. The role of migration in central nervous system neuronal development. Curr. Opin. Neurobiol. 3:38-44.Google Scholar
  17. 17.
    Rakic, P., Cameron, R. S., and Komuro, H. 1994. Recognition, adhesion, transmembrane signaling and cell motility in guided neuronal migration. Curr. Opin. Neurobiol. 4:63-69.Google Scholar
  18. 18.
    Rakic, P. 1995. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18:383-388.Google Scholar
  19. 19.
    Layer, P. G., Berger, J., and Kinkl, N. 1997. Cholinesterases precede “ON-OFF” channel dichotomy in the embryonic chick retina before onset of synaptogenesis. Cell and Tissue Research. 288:407-416.Google Scholar
  20. 20.
    Willbold, E., Reinicke, M., Lance-Jones, C., Lagenaur, C., Lemmon, V., and Layer, P. G. 1995. Muller glia stabilizes cell columns during retinal development: lateral cell migration but not neuropil growth is inhibited in mixed chick-quail retinospheroids. Eur. J. Neurosci. 7:2277-2284.Google Scholar
  21. 21.
    Sharma, R. K., Perez, M. T., and Ehinger, B. 1997. Immunocytochemical localisation of neuronal nitric oxide synthase in developing and transplanted rabbit retinas. Histochem. Cell Biol. 107: 449-458.Google Scholar
  22. 22.
    Sharma, R. K. 2000. Developmental Expression of GABA(A) Receptors in Retinal Transplants. Ophthalmic Res. 32:45-51.Google Scholar
  23. 23.
    Sharma, R. K. 2000. Development of glycine-accumulating neurons in transplanted retinas. Ophthalmologica (in press).Google Scholar
  24. 24.
    Willbold, E., Berger, J., Reinicke, M., and Wolburg, H. 1997. On the role of Muller glia cells in histogenesis: only retinal spheroids, but not tectal, telencephalic and cerebellar spheroids develop histotypical patterns. J. für Hirnforschung/Int'l. J. Brain Res. Neurobiol. 38:383-396.Google Scholar
  25. 25.
    Drazba, J. and Lemmon, V. 1990. The role of cell adhesion molecules in neurite outgrowth on Muller cells. Dev. Biol. 138:82-93.Google Scholar
  26. 26.
    Fadool, J. M. and Linser, P. J. 1993. 5A11 antigen is a cell recognition molecule which is involved in neuronal-glial interactions in avian neural retina. Dev. Dyn. 196:252-262.Google Scholar
  27. 27.
    Willbold, E., Brummendorf, T., Rathjen, F. G., Schwarz, H., and Weiss, B. 1997. The neural cell recognition molecule F11 is expressed on Muller cells and Schwann cells in vitro. J. für Hirnforschung/Int'l. J. Brain Res. Neurobiol. 38:71-80.Google Scholar
  28. 28.
    Brummendorf, T. and Rathjen, F. G. 1995. Cell adhesion molecules 1: immunoglobulin superfamily. Protein Profile 2:963-1108.Google Scholar
  29. 29.
    Chuong, C. M., Crossin, K. L., and Edelman, G. M. 1987. Sequential expression and differential function of multiple adhesion molecules during the formation of cerebellar cortical layers. J. Cell Biol. 104:331-342.Google Scholar
  30. 30.
    Barami, K., Kirschenbaum, B., Lemmon, V., and Goldman, S. A. 1994. N-cadherin and Ng-CAM/8D9 are involved serially in the migration of newly generated neurons into the adult songbird brain. Neuron 13:567-582.Google Scholar
  31. 31.
    McCabe, C. F. and Cole, G. J. 1992. Expression of the barrierassociated proteins EAP-300 and claustrin in the developing central nervous system. Brain Res. Dev. Brain Res. 70:9-24.Google Scholar
  32. 32.
    Kolodkin, A. L. 1996. Growth cones and the cues that repel them. Trends Neurosci. 19:507-513.Google Scholar
  33. 33.
    Brambilla, R. and Klein, R. 1995. Telling axons where to grow: a role for Eph receptor tyrosine kinases in guidance. Mol. Cell Neurosci. 6:487-495.Google Scholar
  34. 34.
    Snow, D. M., Lemmon, V., Carrino, D. A., Caplan, A. I., and Silver, J. 1990. Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Experimental Neurology 109:111-130.Google Scholar
  35. 35.
    Schnell, L. and Schwab, M. E. 1990. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343:269-272.Google Scholar
  36. 36.
    Mukhopadhyay, G., Doherty, P., Walsh, F. S., Crocker, P. R., and Filbin, M. T. 1994. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13:757-767.Google Scholar
  37. 37.
    McKerracher, L., David, S., Jackson, D. L., Kottis, V., Dunn, R. J., and Braun, P. E. 1994. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13:805-811.Google Scholar
  38. 38.
    DeBellard, M. E., Tang, S., Mukhopadhyay, G., Shen, Y. J., and Filbin, M. T. 1996. Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. Mol. Cell Neurosci. 7:89-101.Google Scholar
  39. 39.
    Keynes, R. J. and Cook, G. M. 1995. Repulsive and inhibitory signals. Curr. Opin. Neurobiol. 5:75-82.Google Scholar
  40. 40.
    Stuermer, C. A. and Bastmeyer, M. 2000. The retinal axon's pathfinding to the optic disk. Prog. Neurobiol. 62:197-214.Google Scholar
  41. 41.
    Cohen-Cory, S. and Fraser, S. E. 1994. BDNF in the development of the visual system of Xenopus. Neuron 12:747-761.Google Scholar
  42. 42.
    Adler, R., Jerdan, J., and Hewitt, A. T. 1985. Responses of cultured neural retinal cells to substratum-bound laminin and other extracellular matrix molecules. Dev. Biol. 112:100-114.Google Scholar
  43. 43.
    Kljavin, I. J. and Reh, T. A. 1991. Müller cells are a preferred substrate for in vitro neurite extension by rod photoreceptor cells. J. Neurosci. 11:2985-2994.Google Scholar
  44. 44.
    Kljavin, I. J., Lagenaur, C., Bixby, J. L., and Reh, T. A. 1994. Cell adhesion molecules regulating neurite growth from amacrine and rod photoreceptor cells [published erratum appears in J. Neurosci. 1994 Oct;14(10):following table of contents]. J. Neurosci. 14:5035-5049.Google Scholar
  45. 45.
    Politi, L. E., Insua, F., and Buzzi, E. 1998. Selective outgrowth and differential tropism of amacrine and photoreceptor axons to cell targets during early development in vitro. J. Neurosci. Res. 52:105-117.Google Scholar
  46. 46.
    Carbonetto, S., Gruver, M. M., and Turner, D. C. 1983. Nerve fiber growth in culture on fibronectin, collagen, and glycosaminoglycan substrates. J. Neurosci. 3:2324-2335.Google Scholar
  47. 47.
    Denis-Donini, S. and Estenoz, M. 1988. Interneurons versus efferent neurons: heterogeneity in their neurite outgrowth response to glia from several brain regions. Dev. Biol. 130:237-249.Google Scholar
  48. 48.
    Lemmon, V. and McLoon, S. C. 1986. The appearance of an L1-like molecule in the chick primary visual pathway. J. Neurosci. 6:2987-2994.Google Scholar
  49. 49.
    Persohn, E. and Schachner, M. 1987. Immunoelectron microscopic localization of the neural cell adhesion molecules L1 and N-CAM during postnatal development of the mouse cerebellum. J. Cell Biolog. 105:569-576.Google Scholar
  50. 50.
    Martini, R. and Schachner, M. 1988. Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve. J. Cell Biolog. 106:1735-1746.Google Scholar
  51. 51.
    Rathjen, F. G., Wolff, J. M., Chang, S., Bonhoeffer, F., and Raper, J. A. 1987. Neurofascin: a novel chick cell-surface glycoprotein involved in neurite-neurite interactions. Cell 51:841-849.Google Scholar
  52. 52.
    Durbec, P., Gennarini, G., Goridis, C., and Rougon, G. 1992. A soluble form of the F3 neuronal cell adhesion molecule promotes neurite outgrowth. J. Cell Biolog. 117:877-887.Google Scholar
  53. 53.
    Burns, F. R., von Kannen, S., Guy, L., Raper, J. A., Kamholz, J., and Chang, S. 1991. DM-GRASP, a novel immunoglobulin superfamily axonal surface protein that supports neurite extension. Neuron 7:209-220.Google Scholar
  54. 54.
    Tanaka, H., Matsui, T., Agata, A., Tomura, M., Kubota, I., McFarland, K. C., Kohr, B., Lee, A., Phillips, H. S., and Shelton, D. L. 1991. Molecular cloning and expression of a novel adhesion molecule, SC1. Neuron 7:535-545.Google Scholar
  55. 55.
    Dodd, J. and Jessell, T. M. 1988. Axon guidance and the patterning of neuronal projections in vertebrates. Science 242:692-699.Google Scholar
  56. 56.
    Stoeckli, E. T., Kuhn, T. B., Duc, C. O., Ruegg, M. A., and Sonderegger, P. 1991. The axonally secreted protein axonin-1 is a potent substratum for neurite growth. J. Cell Biolog. 112:449-455.Google Scholar
  57. 57.
    Chuang, W. and Lagenaur, C. F. 1990. Central nervous system antigen P84 can serve as a substrate for neurite outgrowth. Dev. Biol. 137:219-232.Google Scholar
  58. 58.
    Kuhn, T. B., Stoeckli, E. T., Condrau, M. A., Rathjen, F. G., and Sonderegger, P. 1991. Neurite outgrowth on immobilized axonin-1 is mediated by a heterophilic interaction with L1(G4). J. Cell Biolog. 115:1113-1126.Google Scholar
  59. 59.
    Brummendorf, T., Hubert, M., Treubert, U., Leuschner, R., Tarnok, A., and Rathjen, F. G. 1993. The axonal recognition molecule F11 is a multifunctional protein: specific domains mediate interactions with Ng-CAM and restrictin. Neuron 10:711-727.Google Scholar
  60. 60.
    Hoffman, S., Sorkin, B. C., White, P. C., Brackenbury, R., Mailhammer, R., Rutishauser, U., Cunningham, B. A., and Edelman, G. M. 1982. Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes. J. Biolog. Chem. 257:7720-7729.Google Scholar
  61. 61.
    Bruses, J. L., Oka, S., and Rutishauser, U. 1995. NCAM-associated polysialic acid on ciliary ganglion neurons is regulated by polysialytransferase levels and interaction with muscle. J. Neurosci. 15: 8310-8319.Google Scholar
  62. 62.
    Yin, X., Watanabe, M., and Rutishauser, U. 1995. Effect of polysialic acid on the behavior of retinal ganglion cell axons during growth into the optic tract and tectum. Development 121: 3439-3446.Google Scholar
  63. 63.
    Doherty, P., Cohen, J., and Walsh, F. S. 1990. Neurite outgrowth in response to transfected N-CAM changes during development and is modulated by polysialic acid. Neuron 5:209-219.Google Scholar
  64. 64.
    Doherty, P. and Walsh, F. S. 1994. Signal transduction events underlying neurite outgrowth stimulated by cell adhesion molecules. Curr. Opin. Neurobiol. 4:49-55.Google Scholar
  65. 65.
    Beggs, H. E., Soriano, P., and Maness, P. F. 1994. NCAM-dependent neurite outgrowth is inhibited in neurons from Fyn-minus mice. J. Cell Biolog. 127:825-833.Google Scholar
  66. 66.
    Saffell, J. L., Doherty, P., Tiveron, M. C., Morris, R. J., and Walsh, F. S. 1995. NCAM requires a cytoplasmic domain to function as a neurite outgrowth-promoting neuronal receptor. Mol. Cell Neurosci. 6:521-531.Google Scholar
  67. 67.
    Zondag, G. C., Koningstein, G. M., Jiang, Y. P., Sap, J., Moolenaar, W. H., and Gebbink, M. F. 1995. Homophilic interactions mediated by receptor tyrosine phosphatases mu and kappa. A critical role for the novel extracellular MAM domain [published erratum appears in J. Biol. Chem. 1995 Oct 13;270(41):24621]. J. Biolog. Chem. 270:14247-14250.Google Scholar
  68. 68.
    Peles, E., Nativ, M., Campbell, P. L., Sakurai, T., Martinez, R., Lev, S., Clary, D. O., Schilling, J., Barnea, G., and Plowman, G. D. 1995. The carbonic anhydrase domain of receptor tyrosine phosphatase beta is a functional ligand for the axonal cell recognition molecule contactin. Cell 82:251-260.Google Scholar
  69. 69.
    Madtes, P., Jr. and Redburn, D. A. 1983. GABA as a trophic factor during development. Life Sci. 33:979-984.Google Scholar
  70. 70.
    Lipton, S. A., Frosch, M. P., Phillips, M. D., Tauck, D. L., and Aizenman, E. 1988. Nicotinic antagonists enhance process outgrowth by rat retinal ganglion cells in culture. Science 239:1293-1296.Google Scholar
  71. 71.
    Redburn, D. A. and Madtes, P., Jr. 1986. Postnatal development of 3H-GABA-accumulating cells in rabbit retina. J. Comp. Neurol. 243:41-57.Google Scholar
  72. 72.
    Messersmith, E. K. and Redburn, D. A. 1990. Kainic acid lesioning alters development of the outer plexiform layer in neonatal rabbit retina. Int. J. Dev. Neurosci. 8:447-461.Google Scholar
  73. 73.
    Hu, M., Bruun, A., and Ehinger, B. 1998. The expression of GABA(A) receptors during the development of the rabbit retina. Acta Ophthalmol. Scand. 76:515-520.Google Scholar
  74. 74.
    Greferath, U., Grunert, U., Muller, F., and Wassle, H. 1994. Localization of GABAA receptors in the rabbit retina. Cell and Tissue Research 276:295-307.Google Scholar
  75. 75.
    Huang, B. O. and Redburn, D. A. 1996. GABA-induced increases in [Ca2+]i in retinal neurons of postnatal rabbits. Visual Neurosci. 13:441-447.Google Scholar
  76. 76.
    Constantine-Paton, M., Cline, H. T., and Debski, E. 1990. Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu. Rev. Neurosci. 13:129-154.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Rajesh K. Sharma
    • 1
  • Dianna A. Johnson
    • 2
  1. 1.Department of OphthalmologyUniversity of TennesseeMemphis
  2. 2.Department of OphthalmologyUniversity of TennesseeMemphis

Personalised recommendations