Environmental Biology of Fishes

, Volume 58, Issue 3, pp 237–275 | Cite as

Temperature Tolerances of North American Freshwater Fishes Exposed to Dynamic Changes in Temperature

  • Thomas L. Beitinger
  • Wayne A. Bennett
  • Robert W. McCauley


Traditionally lower and upper temperature tolerances of fishes have been quantified in the laboratory via three different experimental approaches: the Fry or incipient lethal temperature (ILT), critical thermal (CTM) and chronic lethal (CLM) methodologies. Although these three experimental laboratory approaches generate endpoints which are quantitatively expressed as a temperature, are determined experimentally with random samples of fish acclimated to specific temperatures, and involve both time and temperature as major test variables, they do not quantify the same response. All three approaches generate valuable, albeit different, information concerning the temperature tolerance of a species. In this review we have summarized published research concerning the tolerance of North American freshwater fishes to dynamic changes in temperature, i.e., tolerance is tested by methods that gradually change temperatures until biological stress is observed. We found more than 450 individual temperature tolerances listed in 80 publications which present original dynamic temperature tolerance data for 116 species, 7 subspecies and 7 hybrids from 19 families of North American freshwater fishes. This total represents about 1/3 of the families and 1/6 of the known North American freshwater species. Temperature tolerance data were partitioned by experimental approach, i.e., critical thermal method (CTM) and chronic lethal method (CLM), and direction of temperature change. Although both CTM and CLM expose fish to dynamic changes in water temperature, these two methods differ in temperature change rates and test endpoints, and hence measure different aspects of thermal stress. A majority of the 80 studies employed CTM to assess temperature tolerance, in particular determination of CTmaxima. One or more CTmaxima has been reported for 108 fishes. Twenty-two fishes have reported highest CTmaxima of 40°C or higher. Several species in the family Cyprinodontidae have generated some of the highest CTmaxima reported for any ectothermic vertebrate. For a variety of reasons, data concerning tolerance of low temperatures are less plentiful. Low temperature tolerance quantified as either CTminima or CLminima were found for a total of 37 fishes. Acclimation temperature exerts a major effect on the temperature tolerance of most North American fish species and it is usually strongly linearly related to both CTmaxima and CTminima. Although we uncovered dynamic temperature tolerance data for 130 fishes, only a single dynamic, temperature tolerance polygon has been published, that for the sheepshead minnow, Cyprinodon variegatus.

critical thermal maximum critical thermal minimum chronic lethal maximum chronic lethal minimum lethal temperatures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Agersborg, H.P.K. 1930. The influence of temperature on fish. Ecology 11: 136–144.Google Scholar
  2. Alabaster, J.S. 1963. Effects of heated effluents on fish. Intern. J. Air Wat. Poll. 7: 541–563.Google Scholar
  3. Alcorn, S.R. 1976. Temperature tolerance and upper lethal limits of Salmo apache. Trans. Amer. Fish. Soc. 105: 294–295.Google Scholar
  4. Allen, K.O. & K. Strawn. 1967. Heat tolerance of channel catfish, Ictalurus punctatus. Proc. Southeast. Assoc. Game and Fish Comm. 21: 399–411.Google Scholar
  5. Bailey, R.M. 1955. Differential mortality from high temperature in a mixed population of fishes in southern Michigan. Ecology 36: 526–528.Google Scholar
  6. Bangs, O. 1895. The present standing of the Florida manatee, Trichecus latirostris (Harlan), in Indian River waters. Amer. Nat. 29: 783–787.Google Scholar
  7. Becker, C.D. & R.G. Genoway. 1979. Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Env. Biol. Fish. 4: 245–256.Google Scholar
  8. Becker, C.D. & M.G. Wolford. 1980. Thermal resistance of juvenile salmonids sublethally exposed to nickel, determined by the critical thermal maximum method. Env. Poll. (Series A) 21: 181–189.Google Scholar
  9. Becker, C.D., R.G. Genoway & M.J. Schneider. 1977. Comparative cold resistance of three Columbia river organisms. Trans. Amer. Fish. Soc. 106: 178–184.Google Scholar
  10. Beitinger, T.L. & J.J. Magnuson. 1975. Influence of social rank and size on thermoselection behavior of bluegills (Lepomis macrochirus). J. Fish. Res. Board Can. 32: 2133–2136.Google Scholar
  11. Beitinger, T.L. & R.W. McCauley. 1990. Whole-animal physiological processes for the assessment of stress in fishes. J. Great Lakes Res. 16: 542–575.Google Scholar
  12. Beitinger, T.L., M.M. Thommes & S.A. Spigarelli. 1977. Relative roles of conduction and convection in the body temperature change of gizzard shad, Dorosoma cepedianum. Comp. Biochem. Physiol. 57A: 275–279.Google Scholar
  13. Belding, D.L. 1928. Water temperature and fish life. Trans. Amer. Fish. Soc. 58: 98–105.Google Scholar
  14. Bennett, W.A. & T.L. Beitinger. 1997. Temperature tolerance of sheepshead minnow, Cyprinodon variegatus. Copeia 1997: 77–87.Google Scholar
  15. Bennett, W.A. & F.W. Judd. 1992. Comparison of methods for determining low temperature tolerance: experiments with pinfish, Lagodon rhomboides. Copeia 1992: 1059–1065.Google Scholar
  16. Bennett, W.A., R. Currie, P.F. Wagner & T.L. Beitinger. 1997. Cold tolerance and potential overwintering of redbodied piranha, Pygocentrus nattereri, in the United States. Trans. Amer. Fish. Soc. 126: 841–849.Google Scholar
  17. Bennett, W.A., R.W. McCauley & T.L. Beitinger. 1998. Rates of gain and loss of heat tolerance in channel catfish. Trans. Amer. Fish. Soc. 127: 1051–1058.Google Scholar
  18. Bettoli, P.W., W.H. Neill & S.W. Kelsch. 1985. Temperature preference and heat resistance of grass carp, Ctenopharyngodon idella (Valenciennes), bighead carp, Hypophthalmichthys nobilis (Gray), and their F1 hybrid. J. Fish Biol. 27: 239–247.Google Scholar
  19. Biesinger, K.E., R.P. Brown, C.R. Bernick, G.A. Flitter & K.E.F. Hokanson. 1979. A national compendium of freshwater fish and water temperature data. Volume 1. Data management techniques, output examples and limitations. EPA, Report 600/3–79–056, Duluth. 56 pp.Google Scholar
  20. Black, E.C. 1953. Upper lethal temperatures of some British Columbia freshwater fishes. J. Fish. Res. Board Can. 10: 196–210.Google Scholar
  21. Bliss, C.I. 1937. The calculation of time-mortality curve. Ann. Appl. Biol. 24: 815–852.Google Scholar
  22. Bonin, J.D. 1981. Measuring thermal limits of fish. Trans. Amer. Fish. Soc. 110: 662–664.Google Scholar
  23. Bonin, J.D. & J.R. Spotila. 1978. Temperature tolerance of larval muskellunge (Esox masquinongy Mitchill) and F1 hybrids raised under hatchery conditions. Comp. Biochem. Physiol. 59A: 245–248.Google Scholar
  24. Brattstrom, B.H. 1968. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24: 93–111.Google Scholar
  25. Brett, J.R. 1941. Tempering versus acclimation in the planting of speckled trout. Trans. Amer. Fish. Soc. 70: 397–403.Google Scholar
  26. Brett, J.R. 1944. Some lethal temperature relations of Algonquin Park fishes. Univ. Toronto Studies in Biol., Series No. 52; Publ. Ont. Fish. Res. Lab. 63: 1–49.Google Scholar
  27. Brett, J.R. 1946. Rate of gain of heat-tolerance in goldfish (Carassius auratus). Univ. Toronto Studies in Biol., Series No. 53; Publ. Ont. Fish. Res. Lab. 64: 7–28.Google Scholar
  28. Brett, J.R. 1952. Temperature tolerance in young Pacific salmon, genus Oncorhynchus. J. Fish. Res. Board Can. 9: 265–309.Google Scholar
  29. Brett, J.R. 1956. Some principles in the thermal requirements of fishes. Quart. Rev. Biol. 31: 75–87.Google Scholar
  30. Brett, J.R. 1970. Environmental factors, part I. Temperature. pp. 515–560. In: O. Kinne (ed.) Marine Ecology, Wiley, London.Google Scholar
  31. Brett, J.R. 1971. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Amer. Zool. 11: 99–113.Google Scholar
  32. Britton, S.W. 1924. The effects of extreme temperature on fishes. Amer. J. Physiol. 67: 411–421.Google Scholar
  33. Brock, T.D. 1985. Life at high temperatures. Science 230: 132–138.Google Scholar
  34. Bulger, A.J. 1984. A daily rhythm in heat tolerance in the salt marsh fish Fundulus heteroclitus. J. Exper. Zool. 230: 11–16.Google Scholar
  35. Bulger, A.J. & R.J. Schultz. 1979. Heterosis and intercloal variation in thermal tolerance in unisexual fishes. Evolution 33: 848–859.Google Scholar
  36. Bulger, A.J. & R.J. Schultz. 1982. Origin of thermal adaptations in northern versus southern populations of a unisexual hybrid fish. Evolution 36: 1041–1050.Google Scholar
  37. Bulger, A.J. & S.C. Tremaine. 1985. Magnitude of seasonal effects on heat tolerance in Fundulus heteroclitus. Physiol. Zool. 58: 197–204.Google Scholar
  38. Burton, D.T., E.L. Morgan & J. Cairns, Jr. 1972. Mortality curves of bluegills (Lepomis macrochirus Rafinesque) simultaneously exposed to temperature and zinc stress. Trans. Amer. Fish. Soc. 101: 435–441.Google Scholar
  39. Cairns, J., Jr. 1968. We're in hot water. Scient. Citizen 10: 187–198.Google Scholar
  40. Carey, F.G. & J.M. Teal. 1966. Heat conservation in tuna fish muscles. Proc. Nat. Acad. Sci. U.S.A. 56: 1464–1469.Google Scholar
  41. Carey, F.G. & J.M. Teal. 1969a. Mako and porbeagle: warm bodied sharks. Comp. Biochem. Physiol. 28: 199–204.Google Scholar
  42. Carey, F.G. & J.M. Teal. 1969b. Regulation of body temperature by the bluefin tuna. Comp. Biochem. Physiol. 28: 205–213.Google Scholar
  43. Carey, F.G., J.M. Teal, J.W. Kanwisher & K.D. Lawson. 1971. Warm bodied fish. Amer. Zool. 11: 137–145.Google Scholar
  44. Carrier, R. & T.L. Beitinger. 1988a. Resistance of temperature tolerance ability of green sunfish to cadmium exposure. Bull. Environ. Contam. Toxicol. 40: 475–480.Google Scholar
  45. Carrier, R. & T.L. Beitinger. 1988b. Reduction in thermal tolerance of Notropis lutrensis and Pimelphales promelas exposed to cadmium. Water Res. 22: 511–515.Google Scholar
  46. Carter, W.A. 1887. Temperature in relation to fish. Nature 36: 213–214.Google Scholar
  47. Castleberry, D.T. & J.C. Cech, Jr. 1992. Critical thermal maxima of five fishes from the upper Klamath basin. Calif. Fish Game 78: 145–152.Google Scholar
  48. Chagnon, N. & I. Hlohowskyj. 1989. Effects of phenol exposure on the thermal tolerance ability of the central stoneroller minnow. Bull. Environ. Contam. Toxicol. 42: 614–619.Google Scholar
  49. Cheetham, J.L., C.T. Garten, C.L. King & M.H. Smith. 1976. Temperature tolerance and preference of immature channel catfish (Ictalurus punctatus). Copeia 1976: 609–612.Google Scholar
  50. Clark, J.R. 1969. Thermal pollution and aquatic life. Sci. Amer. 220: 19–27.Google Scholar
  51. Clausen, R.G. 1934. Body temperature of freshwater fishes. Ecology 15: 139–144.Google Scholar
  52. Cocking, A.W. 1959. The effect of high temperature on roach (Rutilus rutilus). II. The effects of temperature increasing at a known constant rate. J. Exper. Biol. 36: 217–226.Google Scholar
  53. Copeland, B.J., R.W. Laney & E.C. Pendleton. 1974. Heat influences in estuarine ecosystems. pp. 423–437. In: J.W.Gibbons & R.R. Sharitz (ed.) Thermal Ecology, Nat. Tech. Inform. Serv., Springfield.Google Scholar
  54. Coulton, J.B., Jr. 1959. A field observation of mortality of marine fish larvae due to warming. Limn. & Ocean. 4: 219–222.Google Scholar
  55. Coutant, C.C. 1969. Temperature, reproduction and behavior. Chesap. Sci. 10: 261–274.Google Scholar
  56. Coutant, C.C. 1975. Temperature selection by fish-a factor in power plant impact assessments. pp. 575–597. In: Environmental Effects of Cooling Systems at Nuclear Power Plants, Internat. Atomic Energy Agency, Vienna.Google Scholar
  57. Coutant, C.C. 1977. Cold shock to aquatic organisms: guidance for power plant siting, design and operation. Nuclear Safety 18: 329–342.Google Scholar
  58. Coutant, C.C. 1981. Foreseeable effects of CO2-induced climate change: freshwater concerns. Environ. Conserv. 8: 285–297.Google Scholar
  59. Coutant, C.C. 1990. Temperature-oxygen habitat for freshwater and coastal striped bass in a changing climate. Trans. Amer. Fish. Soc. 119: 240–253.Google Scholar
  60. Cowles, R.B. & C.M. Bogert. 1944. A preliminary study of the thermal requirements of desert reptiles. Bull. Amer. Mus. Nat. Hist. 83: 265–296.Google Scholar
  61. Cox, D.K. 1974. Effects of three heating rates on the critical thermal maximum of bluegill. pp. 158–163. In: J.W. Gibbons & R.R. Sharitz (ed.) Thermal Ecology, Nat. Tech. Inform. Serv., Springfield.Google Scholar
  62. Currie, R.J., W.A. Bennett & T.L. Beitinger. 1998. Critical thermal minima and maxima of three freshwater game-fish species acclimated to constant temperatures. Env. Biol. Fish. 51: 187–200.Google Scholar
  63. Dahlberg, M.D. & F.G. Smith. 1970. Mortality of estuarine animals due to cold off the Georgia coast. Ecology 51: 931–933.Google Scholar
  64. Davenport, C.B. & W.E. Castle. 1895. Studies in morphogenesis, III. On the acclimatization of organisms to high temperatures. Arch. Entwick 2: 227–249.Google Scholar
  65. Davies, W.D. 1973. Rates of temperature acclimation for hatchery reared striped bass fry and fingerlings. Prog. Fish-Cult. 35: 214–217.Google Scholar
  66. Day, F. 1885. The effects of an elevated temperature on fishes. Bull. U.S. Fish Comm. 5: 142–144.Google Scholar
  67. Dean, J.M. 1976. Temperature of tissues in freshwater fishes. Trans. Amer. Fish. Soc. 105: 709–711.Google Scholar
  68. Doudoroff, P. 1942. The resistance and acclimatization of fishes to temperature changes. I. Experiments with Girella nigricans (Ayres). Biol. Bull. 83: 219–244.Google Scholar
  69. Doudoroff, P. 1945. The resistance and acclimatization of marine fishes to temperature changes. II. Experiments with Fundulus and Atherinops. Biol. Bull. 88: 194–206.Google Scholar
  70. Eaton, J.G., J.H. McCormick, B.E. Goodno, D.G. O'Brien, H.G. Stefan, M. Hondzo & R.M. Scheller. 1995. A field information based system for estimating fish temperature tolerance. Fisheries 20: 10–18.Google Scholar
  71. Elliot, J.M. 1981. Some aspects of thermal stress in freshwater teleosts. pp. 209–245. In: A.D. Pickering (ed.) Stress and Fish, Academic Press, New York.Google Scholar
  72. Elliot, J.M. 1991. Tolerance and resistance to thermal stress in juvenile Atlantic salmon, Salmo salar. Freshwat. Biol. 25: 61–70.Google Scholar
  73. Elliott, J.M. & J.A. Elliott. 1995. The effect of the rate of temperature increase on the critical thermal maximum for parr of Atlantic salmon and brown trout. J. Fish Biol. 47: 917–919.Google Scholar
  74. Esch, G.W. & R.W. McFarlane. 1976. Thermal ecology II. Nat. Tech. Inform. Serv., Springfield. 404 pp.Google Scholar
  75. Feldmuth, C.R. & J.N. Baskin. 1976. Thermal and respiratory studies with references to temperature and oxygen tolerance for the unarmored stickleback Gasterosteus aculeatusWilliamson. Hubbs. Bull. South. Calif. Acad. Sci. 75: 127–131.Google Scholar
  76. Feldmuth, C.R., E.A. Stone & J.H. Brown. 1974. An increased scope for thermal tolerance upon acclimating pupfish (Cyprinodon) to cycling temperatures. J. comp. Physiol. 89: 39–44.Google Scholar
  77. Feminella, J.W. & W.J. Matthews. 1984. Intraspecific differences in thermal tolerances of Etheostoma spectabile (Agassiz) in constant versus fluctuating environments. J. Fish Biol. 25: 455–461.Google Scholar
  78. Fields, R., S.S. Lowe, C. Kaminski, G.S. Whitt & D.P. Philipp. 1987. Critical and chronic thermal maxima of northern and Florida largemouth bass and their reciprocal F1 and F2 hybrids. Trans. Amer. Fish. Soc. 116: 856–863.Google Scholar
  79. Fitch, R.H. 1917. Fish killed by the cold wave of February 2–4, 1917, in Florida. Month. Weather Rev. 45: 171–173.Google Scholar
  80. Fry, F.E.J. 1947. Effects of the environment on animal activity. Univ. Toronto Studies in Biol., Series No. 55, Publ. Ont. Fish. Res. Lab. 68: 1–62.Google Scholar
  81. Fry, F.E.J. 1964. Animals in aquatic environments: fishes. pp. 715–728. In: E.F. Adolph & C.G. Wilber (ed.) Handbook of Physiology, 4: Adaptation to the Environment, Amer. Physiol. Soc., Washington D.C.Google Scholar
  82. Fry, F.E.J. 1967. Responses of vertebrate poikilotherms to temperature. pp. 375–409. In: A.H. Rose (ed.) Thermobiology, Academic Press, London.Google Scholar
  83. Fry, F.E.J. 1971. The effect of environmental factors on the physiology of fish. pp. 1–98. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Volume 6, Environmental Relations and Behavior, Academic Press, New York.Google Scholar
  84. Fry, F.E.J., J.R. Brett & G.H. Clawson. 1942. Lethal limits of temperature for young goldfish. Revue Canad. Biol. 1: 50–56.Google Scholar
  85. Fry, F.E.J., J.S. Hart & K.F. Walker. 1946. Lethal temperature relations for a sample of young speckled trout (Salvelinus fontinalis). Univ. Toronto Studies in Biol., Series No. 54, Publ. Ont. Fish. Res. Lab. 66: 9–35.Google Scholar
  86. Galloway, J.C. 1941. Lethal effects of the cold winter of 1939/40 on marine fishes at Key West Florida. Copeia 1941: 118–119.Google Scholar
  87. Gelbach, F.R., C.L. Bryan & H.A. Reno. 1978. Thermal ecological features of Cyprinodon elegans and Gambusia nobilis, endangered Texas fishes. Tex. J. Sci. 30: 99–100.Google Scholar
  88. Gibbons, J.W. & R.R. Sharitz. 1974. Thermal ecology. Nat. Tech. Inform. Serv., Springfield. 686 pp.Google Scholar
  89. Grande, M. & S. Andersen. 1991. Critical thermal maxima for young salmonids. J. Freshwat. Ecol. 6: 275–279.Google Scholar
  90. Guest, W.C. 1985. Temperature tolerance of Florida and northern largemouth bass: effects of subspecies, fish size and season. Tex. J. Sci. 37: 75–81.Google Scholar
  91. Gunn, D.L. 1942. Body temperature in poikilothermal animals. Biol. Rev. 17: 293–314.Google Scholar
  92. Gunther, G. 1941. Death of fishes due to cold on the Texas coast, January, 1940. Ecology 22: 203–208.Google Scholar
  93. Gunther, G. 1947. Differential rate of death for large and small fishes caused by hard cold waves. Science 106: 472.Google Scholar
  94. Gunther, G. 1952. The import of catastrophic mortalities for marine fisheries along the Texas coast. J. Wildli. Manag. 16: 63–69.Google Scholar
  95. Gunther, G. & H.H. Hildebrandt. 1951. Destruction of fishes and other organisms on the south Texas coast by the cold wave of January 28–February 3, 1951. Ecology 32: 731–736.Google Scholar
  96. Hart, J.S. 1947. Lethal temperature relations of certain fish of the Toronto region. Trans. Royal Soc. Can. 41: 57–71.Google Scholar
  97. Hart, J.S. 1952. Geographic variations of some physiological and morphological characters in certain freshwater fish. Univ. Toronto Studies in Biol., Series No. 60, Publ. Ont. Fish. Res. Lab. 72: 1–79.Google Scholar
  98. Hassan, K.C. & J.R. Spotila. 1976. The effect of acclimation on the temperature tolerance of young muskellunge fry. pp. 136–140. In: G.W. Esch & R.W. McFarlane (ed.) Thermal Ecology II, Nat. Tech. Inform. Serv., Springfield.Google Scholar
  99. Hathaway, E.S. 1927. Quantitative study of the changes produced by acclimatization in the tolerance of high temperatures by fishes and amphibians. Bull. U.S. Bur. Fish. 43: 169–192.Google Scholar
  100. Heath, N. 1884. Effect of cold on fishes. Bull. U.S. Fish Comm. 4: 369–371.Google Scholar
  101. Heath, W.G. 1963. Thermoperiodism in sea-run cutthroat trout (Salmo clarki clarki). Science 142: 486–488.Google Scholar
  102. Heath, W.G. 1967. Ecological significance of temperature tolerance in Gulf of California shore fishes. J. Ariz. Acad. Sci. 4: 172–178.Google Scholar
  103. Heath, A.G., B.J. Turner & W.P. Davis. 1993. Temperature preference and tolerances of three fish species inhabiting hyperthermal ponds on mangrove islands. Hydrobiologia 259: 47–55.Google Scholar
  104. Heath, S., W.A. Bennett, J. Kennedy & T.L. Beitinger. 1994. Heat and cold tolerance of the fathead minnow, Pimephales promelas, exposed to the synthetic pyrethroid cyfluthrin. Can. J. Fish. Aquat. Sci. 51: 437–440.Google Scholar
  105. Hickman, G.D. & M.R. Dewey. 1973. Notes of the upper lethal temperature of the duskystripe shiner, Notropis pilsbryi, and the bluegill, Lepomis macrochirus. Trans. Amer. Fish. Soc. 102: 838–840.Google Scholar
  106. Hlohowskyj, I. & T.E. Wissing. 1985. Seasonal changes in the critical thermal maxima of fantail (Etheostoma flabellare), greenside (Etheostoma blenniodes), and rainbow (Etheostoma caeruleum) darters. Can. J. Zool. 63: 1629–1633.Google Scholar
  107. Hockett, C.T. & N.D. Munduhl. 1988. Effects of black spot disease on thermal tolerances and condition factors of three cyprinid fishes. J. Freshwat. Ecol. 5: 67–72.Google Scholar
  108. Holland, W.E., M.H. Smith, J.W. Gibbons & D.H. Brown. 1974. Thermal tolerances of fish from a reservoir receiving heated effluent from a nuclear reactor. Physiol. Zool. 47: 110–118.Google Scholar
  109. Holt, S.A. & G.J. Holt. 1983. Cold death of fishes at Post Aransas, Texas: January 1982. Southwest. Nat. 28: 464–466.Google Scholar
  110. Hoss, D.E., L.C. Coston & W.F. Hettler, Jr. 1972. Effects of increased temperature on post-larval and juvenile estuarine fish. Proc. Southeast. Assoc. Game and Fish Comm. 25: 635–642.Google Scholar
  111. Houston, A.H. 1982. Thermal effects upon fishes. Pub. Nat. Res. Council. Can. No. 18566. 200 pp.Google Scholar
  112. Huntsman, A.G. 1942. Death of salmon and trout at high temperature. J. Fish. Res. Board Can. 5: 485–501.Google Scholar
  113. Huntsman, A.G. 1946. Heat stroke in Canadian maritime stream fishes. J. Fish. Res. Board Can. 6: 476–482.Google Scholar
  114. Huntsman, A.G. & M.I. Sparks. 1924. Limiting factors for marine animals. 3. Relative resistance to high temperatures. Contrib. Can. Biol. 2: 97–114.Google Scholar
  115. Hutchison, V.H. 1961. Critical thermal maxima in salamanders. Physiol. Zool. 34: 92–125.Google Scholar
  116. Hutchison, V.H. 1976. Factors influencing thermal tolerance of individual organisms. pp. 10–26. In: G.W. Esch & R.W. McFarlane (ed.) Thermal Ecology II, Nat. Tech. Inform. Serv., Springfield.Google Scholar
  117. Hutchison, V.H. & J.D. Maness. 1979. The role of behavior in temperature acclimation and tolerance in ectotherms. Amer. Zool. 19: 367–384.Google Scholar
  118. Ingersol, C.G. & D.L. Claussen. 1984. Temperature selection and critical thermal maxima of the fantail darter, Etheostoma flabellare, and johnny darter, E. nigrum, related to habitat and season. Env. Biol. Fish. 11: 131–138.Google Scholar
  119. Jennings, D.P. 1991. Behavioral aspects of cold tolerance in blackchin tilapia, Sarotheroden melanotheron, at different salinities. Env. Biol. Fish. 31: 185–195.Google Scholar
  120. Johnson, C.R. 1976. Diel variation in the thermal tolerance of Gambusia affinis affinis (Pisces: Poeciliidae). Comp. Biochem. Physiol. 55A: 337–340.Google Scholar
  121. Kaya, C.M. 1978. Thermal resistance of rainbow trout from a permanently heated stream and of two hatchery strains. Prog. Fish-Cult. 40: 138–142.Google Scholar
  122. Kelso, J.R.M. 1976. Movement of yellowperch (Perca flavescens) and white sucker (Catostomus commersoni) in a nearshore Great Lakes habitat subject to a thermal discharge. J. Fish. Res. Board Can. 33: 42–53.Google Scholar
  123. Kilgour, D.M. & R.W. McCauley. 1986. Reconciling the two methods of measuring upper lethal temperatures in fishes. Env. Biol. Fish. 17: 281–290.Google Scholar
  124. Kilgour, D.M., R.W. McCauley & W. Kwain. 1985. Modeling the lethal effects of high temperature on fish. Can. J. Fish. Aquat. Sci. 42: 947–951.Google Scholar
  125. King, T.L., E.G. Zimmerman & T.L. Beitinger. 1985. Concordant variation in thermal tolerance and allozymes of the red shiner, Notropis lutrensis, inhabiting tailwater sections of the Brazos River, Texas. Env. Biol. Fish. 13: 49–57.Google Scholar
  126. Konecki, J.T., C.A. Woody & T.P. Quinn. 1995. Critical thermal maxima of coho salmon (Oncorhynchus kisutch) fry under field and laboratory accimilation regimes. Can. J. Zool. 73: 993–996.Google Scholar
  127. Kour, E.L. & V.H. Hutchison. 1970. Critical thermal tolerances and heating and cooling rates of lizards from diverse habitats. Copeia 1970: 219–229.Google Scholar
  128. Kowalski K.T., J.P.Schubauer, C.L. Scott & J.R. Spotila. 1978. Interspecific and seasonal differences in the temperature tolerance of stream fish. J. Thermal Biol. 3: 105–108.Google Scholar
  129. Kurten, G. & P. Hutson. 1992. Critical thermal maxima of paddlefish fry and fingerlings. Manage. Data Series 83, Tex. Parks Wildl. Div., Austin. 11 pp.Google Scholar
  130. Larson, M.W. 1961. The critical thermal maximina of the lizard Sceloporus occidentalis occidentalis Baird and Girard. Herpetologica 17: 113–122.Google Scholar
  131. Lee, R.M. & J.N. Rinne. 1980. Critical thermal maxima of five trout species in the southwestern United States. Trans. Amer. Fish. Soc. 109: 632–635.Google Scholar
  132. Lee, D.S., C.R. Gilbert, C.H. Hocutt, R.E. Jenkins, D.E. McAllister & J.R. Stauffer, Jr. 1980. Atlas of North American Freshwater Fishes, N. Carolina State Mus. Nat. Hist., Raleigh.Google Scholar
  133. Loeb, J. & H. Wasteneys. 1912. On the adaptation of fish (Fundulus) to high temperatures. J. Exper. Zool. 12: 543–557.Google Scholar
  134. Lohr, S.C., P.A. Byorth, C.M. Kaya & W.P. Dwyer. 1996. High temperature tolerances of fluvial Arctic grayling and comparisons with summer river temperatures of the Big Hole River, Montana. Trans. Amer. Fish. Soc. 125: 933–939.Google Scholar
  135. Lowe, C.H. & W.G. Heath. 1969. Behavioral and physiological responses to temperature in the desert pupfish Cyprinodon macularius. Physiol. Zool. 42: 53–59.Google Scholar
  136. Lowe, C.H. & V.J. Vance. 1955. Acclimation of the critical thermal maximum of the reptile Urosaurus ornatus. Science 122: 73–74.Google Scholar
  137. Lutterschmidt, W.I. & V.H. Hutchison. 1997a. The critical thermal maximum: data to support the onset of muscle spasm as the definitive end point. Can. J. Zool. 75: 1553–1560.Google Scholar
  138. Lutterschmidt, W.I. & V.H. Hutchison. 1997b. The critical thermal maximum: history and critique. Can. J. Zool. 75: 1561–1574.Google Scholar
  139. Lydy, M.J. & T.E. Wissing. 1988. Effect of sublethal concentrations of copper on the critical thermal maxima (CTMax) of the fantail (Etheostoma flabellare) and johnny (E. nigrum) darters. Aquat. Toxicol. 12: 311–322.Google Scholar
  140. Magnuson, J.J., L.B. Crowder & P.A. Medwick. 1979. Temperature as an ecological resource. Amer. Zool. 19: 331–343.Google Scholar
  141. Magnuson, J.J., J.D. Meisner & D.K. Hill. 1990. Potential changes in the thermal habitat of Great Lakes fish after global climate warming. Trans. Amer. Fish. Soc. 119: 254–264.Google Scholar
  142. Maness, J.D. & V.E. Hutchison. 1980. Acute adjustment of thermal tolerance in vertebrate ectotherms following exposure to critical thermal maxima. J. Thermal Biol. 5: 225–233.Google Scholar
  143. Matthews, W.J. & J.D. Maness. 1979. Critical thermal maxima, oxygen tolerance and success of cyprinid fishes in a southwestern river. Amer. Midl. Nat. 102: 374–377.Google Scholar
  144. Matthews, W.J. & E.G. Zimmerman. 1990. Potential effects of global warming on native fishes of the southern Great Plains and the southwest. Fisheries 15: 26–32.Google Scholar
  145. Matthews, W.J., E, Surat & L.G. Hill. 1982. Heat death of orangethroat darter, Etheostoma spectabile (Percidae) in a natural environment. Southwest. Nat. 27: 216–217.Google Scholar
  146. McCauley, R.W. & T.L. Beitinger. 1992. Predicted effects of climate warming on the commercial culture of the channel catfish, Ictalurus punctatus. GeoJournal 28: 61–66.Google Scholar
  147. McCauley, R.W. & D.M. Kilgour. 1990. Effect of air temperature on growth of largemouth bass in North America. Trans. Amer. Fish. Soc. 119: 276–281.Google Scholar
  148. McClanahan, L.L., C.R. Feldmuth, J. Jones & D.L. Stoltz. 1986. Energetics, salinity and temperature tolerance in the Mohave tui chub, Gila bicolor mohavensis. Copeia 1986: 45–52.Google Scholar
  149. McFarlane, R.W., B.C. Moore & S.E. Williams. 1976. Thermal tolerance of stream cyprinid minnows. pp. 141–144. In: G.W. Esch & R.W. McFarlane (ed.) Thermal Ecology II, Nat. Tech. Inform. Serv., Springfield.Google Scholar
  150. McLeay, D.J., A.J. Knox, J.G. Malick, I.K.Birtwell, G.Hartman & C.L. Ennis. 1983. Effects on Arctic grayling (Thymallus arcticus) of short-term exposure to Yukon placer mining sediments: laboratory and field studies. Can. Tech. Rep. Fish. Aquat. Sci., Ottawa. 1171 p.Google Scholar
  151. Medvick, P.A., J.J. Magnuson & S. Sharr. 1981. Behavioral thermoregulation and social interaction of bluegill, Lepomis macrochirus. Copeia 1981: 9–13.Google Scholar
  152. Meffe, G.K., S.C. Weeks, M. Mulvey & K.L. Kandl. 1995. Genetic differences in thermal tolerance of eastern mosquitofish (Gambusia holbrook; Poeciliidae) from ambient and thermal ponds. Can. J. Fish. Aquat. Sci. 52: 2704–2711.Google Scholar
  153. Meisner, J.D. 1990. Potential loss of thermal habitat for brook trout, due to climaticwarming, in two southern Ontario streams. Trans. Amer. Fish. Soc. 119: 282–291.Google Scholar
  154. Meisner, J.D., J.L. Goodier, H.A. Regier, B.J. Shuter & W.J. Christie. 1987. An assessment of the effects of climate warming on Great Lakes Basin fishes. J. Great Lakes Res. 13: 340–352.Google Scholar
  155. Middaugh, D.P., W.R. Davis & R.L. Yokum. 1975. The response of larval fish, Leiostomus xanthurus, to environmental stress following sublethal cadmium exposure. Contrib. Mar. Sci. 19: 13–19.Google Scholar
  156. Miller, M.E. 1940. Mortality of fishes due to cold on the southeast Florida coast. Ecology 21: 420–421.Google Scholar
  157. Moore, R.H. 1976. Observations of fish killed by cold at Port Aransas, Texas, 11–12 January 1973. Southwest. Nat. 20: 461–466.Google Scholar
  158. Morrow, J.E. & A. Mauro. 1950. Body temperatures of some marine fishes. Copeia 1950: 108–116.Google Scholar
  159. Mundahl, N.D. 1990. Heat death of fish in shrinking stream pools. Amer. Midl. Nat. 123: 40–46.Google Scholar
  160. Murphy, J.C., C.T. Garten, Jr., M.H. Smith & E.A. Standora. 1976. Thermal tolerance and respiratory movement of bluegill from two populations tested at different levels of acclimation temperature andwater hardness. pp. 145–147. In: G.W. Esch & R.W. McFarlane (ed.) Thermal Ecology II, Nat. Tech. Inform. Serv., Springfield.Google Scholar
  161. Neill, W.H. & J.J. Magnuson. 1974. Distributional ecology and behavioral thermoregulation of fishes in relation to heated effluents from a power plant at Lake Monona, Wisconsin. Trans. Amer. Fish. Soc. 103: 663–710.Google Scholar
  162. Neill, W.H. & E.D. Stevens. 1974. Thermal inertia versus thermoregulation in 'warm' turtles and tunas. Science 184: 1008–1010.Google Scholar
  163. Otto, R.G. 1973. Temperature tolerance of the mosquitofish, Gambusia affinis (Baird and Birard). J. Fish Biol. 5: 575–585.Google Scholar
  164. Otto, R.G. 1974. The effects of acclimation to cyclic thermal regimes on heat tolerance of the western mosquitofish. Trans. Amer. Fish. Soc. 103: 31–335.Google Scholar
  165. Otto, R.G. & S.D. Gerking. 1973. Heat tolerance of a Death Valley pupfish (genus Cyprinodon). Physiol. Zool. 46: 43–49.Google Scholar
  166. Otto, R.G., M.A. Kitchel & J. O'Hara Rice. 1976. Lethal and preferred temperatures of the alewife (Alosa pseudoharengus) in Lake Michigan. Trans. Amer. Fish. Soc. 105: 96–106.Google Scholar
  167. Otto, R.G. & J. O'Hara Rice. 1977. Responses of a freshwater sculpin (Cottus cognattus gracilis) to temperature. Trans. Amer. Fish. Soc. 106: 89–94.Google Scholar
  168. Overstreet, R.M. 1974. An estuarine low-temperature fish-kill in Mississippi, with remarks on restricted necropsies. Gulf Res. Rep. 4: 328–350.Google Scholar
  169. Paladino, R.V. & J.R. Spotila. 1978. The effect of arsenic on the thermal tolerance of newly hatched muskellunge fry (Esox masquinony). J. Thermal Biol. 3: 223–227.Google Scholar
  170. Paladino, R.V., J.R. Spotila, J.P. Schubauer & K.T. Kowalski. 1980. The critical thermal maximum: a technique used to elucidate physiological stress and adaptation in fishes. Rev. Canad. Biol. 39: 115–122.Google Scholar
  171. Peterson, M.S. 1993. Thermal tolerance of Iowa and Mississippi populations of juvenile walleye, Stizostedion vitreum. Copeia 1993: 890–894.Google Scholar
  172. Pyron, M. & T.L. Beitinger. 1993. Temperature tolerance after spawning in female and male fathead minnows, Pimephales promelas. Tex. J. Sci. 45: 319–323.Google Scholar
  173. Regier, H.A., J.J. Magnuson & C.C. Coutant. 1990. Introduction to proceedings: symposium on effects of climate change on fish. Trans. Amer. Fish. Soc. 119: 173–175.Google Scholar
  174. Richards, V.L. & T.L. Beitinger. 1995. Reciprocal influences of temperature and copper on survival of fathead minnows, Pimephales promelas. Bull. Environ. Contam. Toxicol. 55: 230–236.Google Scholar
  175. Richards, F.P., W.W. Reynolds & R.W. McCauley. 1977. Temperature preference studies in environmental impact assessment: an overview with procedural recommendations. J. Fish. Res. Board Can. 34: 728–761.Google Scholar
  176. Rutledge, C.J. & T.L. Beitinger. 1989. The effects of dissolved oxygen and aquatic surface respiration on the critical thermal maxima of three intermittent stream fishes. Env. Biol. Fish. 24: 137–143.Google Scholar
  177. Schmidt-Nielsen, K. 1994. Animal physiology: adaptation and environment, 4th edition. Cambridge University Press, Cambridge. 602 pp.Google Scholar
  178. Schubauer, J.P., C.L. Scott, K.T. Kowalski & J.R. Spotila. 1980. Effect of tetracycline hydrochloride treatment on the critical thermal maximum of common shiner. Prog. Fish-Cult. 42: 48–49.Google Scholar
  179. Shafland, P.L. & J.P. Pestrak. 1982. Lower lethal temperatures for fourteen non-native fishes in Florida. Env. Biol. Fish. 7: 149–156.Google Scholar
  180. Simpson, A.C. 1953. Some observations on the mortality of fish and the distribution of plankton in the southern North Sea during the cold winter, 1946–1947. J. Cons. Int. Explor. Mer. 19: 150–177.Google Scholar
  181. Smale, M.A. & C.F. Rabeni. 1995. Hypoxia and hyperthermia tolerances of headwater stream fishes. Trans. Amer. Fish. Soc. 124: 698–710.Google Scholar
  182. Smith, R.K. & K.D. Fausch. 1997. Thermal tolerance and vegetation preference of Arkansas darter and johnny darter for Colorado Plains streams. Trans. Amer. Fish. Soc. 126: 676–686.Google Scholar
  183. Smith, M.H. & S.L. Scott. 1975. Thermal tolerance and biochemical polymorphism on immature largemouth bass Micropterus salmoides Lacepede. Georgia Acad. Sci. Bull. 34: 180–184.Google Scholar
  184. Spellerberg, J.F. 1973. Critical minimum temperature of reptiles. pp. 237–247. In: W. Wieser (ed.) Effects of Temperatures on Ectothermic Organisms, Springer-Verlag, New York.Google Scholar
  185. Spieler, R.E., T.A. Noeske & G.L. Seegert. 1977. Diel variation in sensitivity of fishes to potentially lethal stimuli. Prog. Fish-Cult. 39: 144–147.Google Scholar
  186. Spigarelli, S.A., G.P. Romberg, W. Preprejchal & M.M. Thommes. 1974. Body temperature characteristics of fish at a thermal discharge in Lake Michigan. pp. 119–132. In: J.W. Gibbons & R.R. Sharitz (ed.) Thermal Ecology, Nat. Tech. Inform. Serv., Springfield. Spigarelli, S.A., M.M. Thommes & T.L. Beitinger. 1977. The influence of body weight on heating and cooling in selected Lake Michigan fishes. Comp. Biochem. Physiol. 56A: 51–57.Google Scholar
  187. Spotila, J.R., K.M. Terpin, R.R. Koons & R.L. Bonati. 1979. Temperature requirements of fishes from eastern Lake Erie and the upper Niagara River: a review of the literature. Env. Biol. Fish. 4: 281–307.Google Scholar
  188. Stevens, E.D. & F.E.J. Fry. 1970. The rate of thermal exchange in a teleost, Tilapia mossambica. Can. J. Zool. 48: 221–226.Google Scholar
  189. Stevens, E.D. & F.E.J. Fry. 1974. Heat transfer and body temperatures in non-thermoregulatory teleosts. Can. J. Zool. 52: 1137–1145.Google Scholar
  190. Stevens, E.D. & A.M. Sutterlin. 1976. Heat transfer between fish and ambient water. J. Exper. Biol. 65: 131–145.Google Scholar
  191. Storey, M. 1937. The relation between normal range and mortality of fishes due to cold at Sanibel Island Florida. Ecology 18: 10–26.Google Scholar
  192. Storey, M. & E.W. Gudger. 1936. Mortality of fishes due to cold Sanibel Island, Florida, 1886–1936. Ecology 17: 640–648.Google Scholar
  193. Strange, R.J., R.B. Petrie & J.J. Cech. 1993. Slight stress does not lower critical thermal maximums in hatchery-reared rainbow trout. Folia Zool. 42: 251–256.Google Scholar
  194. Sumner, F.B. & P. Doudoroff. 1938. Some experiments upon temperature acclimatization and respiratory metabolism in fishes. Biol. Bull. 74: 403–429.Google Scholar
  195. Sylvester, J.R. 1975. Critical thermal maxima of three species of Hawaiian estuarine fish: a comparative study. J. Fish Biol. 7: 257–262.Google Scholar
  196. Tabb, D.C. & R.B. Manning. 1961. A checklist of the flora and fauna of northern Florida Bay and adjacent brackish waters of the Florida mainland collected during the period July, 1957 through September, 1960. Bull. Maritime Sci. Gulf Carib. 11: 552–649.Google Scholar
  197. Tabb, D.C., D.L. Bubrow & R.B. Manning. 1962. The ecology of northern Florida Bay and adjacent estuaries. Florida Board Cons. Tech. Ser. 39: 1–81.Google Scholar
  198. Takle, J.C.C., T.L. Beitinger & K.L. Dickson. 1983. Effect of the aquatic herbicide endothal on the critical thermal maximum of red shiner, Notropis lutrensis. Bull. Environ. Contam. Toxicol. 31: 512–517.Google Scholar
  199. Vernon, H.M. 1899. The death temperature of certain marine organisms. J. Physiol. 25: 131–136.Google Scholar
  200. Verril, A.E. 1901. A remarkable instance of the death of fishes at Bermuda in 1901. Amer. J. Sci. (Series 4) 12: 88–95.Google Scholar
  201. Ward, R., I.R. Blandon, T.L. King & T.L. Beitinger. 1993. Comparisons of critical thermal maxima and minima of juvenile red drum (Sciaenops ocellatus) from Texas and North Carolina. Northeast Gulf Sci. 13: 23–28.Google Scholar
  202. Watenpaugh, D.E. & T.L. Beitinger. 1985. Se exposure and temperature tolerance of fathead minnows, Pimephales promelas. J. Thermal Biol. 10: 83–86.Google Scholar
  203. Watenpaugh, D.E., T.L. Beitinger & D.W. Huey. 1985. Temperature tolerance of nitrite-exposed channel catfish. Trans. Amer. Fish. Soc. 114: 274–278.Google Scholar
  204. Weller, E.E., D.J. Anderson, D.L. De Angelis & C.C. Coutant. 1984. Rates of heat exchange in largemouth bass: experiment and model. Physiol. Zool. 57: 413–427.Google Scholar
  205. Wells, M.M. 1914. Resistance and reactions of fishes to temperature. Trans. Illinois Acad. Sci. 7: 48–59.Google Scholar
  206. Wells, H.W., M.J. Wells & I.E. Gray. 1961. Winter fish mortality in Pamlico Sound, North Carolina. Ecology 42: 217–219.Google Scholar
  207. Wilcox, J. 1887. Fish killed by cold along the Gulf of Mexico and coast of Florida. Bull. U.S. Fish Comm. 6: 123.Google Scholar
  208. Woiwode, J.G. & I.R. Adelman. 1992. Effects of starvation, oscillating temperatures, and photoperiod on the critical thermal maximum of hybrid striped-white bass. J. Thermal Biol. 17: 271–275.Google Scholar
  209. Young, J.S. & C.I. Gibson. 1973. Effects of heated effluents on migrating menhaden. Mar. Poll. Bull. 4: 94–96.Google Scholar
  210. Zale, A.V. & R.W. Gregory. 1989. Effect of salinity on cold tolerance of juvenile blue tilapias. Trans. Amer. Fish. Soc. 118: 718–720.Google Scholar
  211. Zweifel, R.G. 1957. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24: 93–111.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Thomas L. Beitinger
    • 1
  • Wayne A. Bennett
    • 2
  • Robert W. McCauley
    • 3
  1. 1.Department of BiologyUniversity of North TexasDentonU.S.A.
  2. 2.Department of BiologyUniversity of West FloridaPensacolaU.S.A.
  3. 3.Department of BiologyWilfrid Laurier UniversityWaterlooCanada

Personalised recommendations