Neurochemical Research

, Volume 25, Issue 9–10, pp 1161–1172 | Cite as

The Endosomal-Lysosomal System of Neurons in Alzheimer's Disease Pathogenesis: A Review

  • Ralph A. Nixon
  • Anne M. Cataldo
  • Paul M. Mathews


A prominent feature of brain pathology in Alzheimer's disease is a robust activation of the neuronal lysosomal system and major cellular pathways converging on the lysosome, namely, endocytosis and autophagy. Recent studies that identify a disturbance of the endocytic pathway as one of the earliest known manifestation of Alzheimer's disease provide insight into how β-amyloidogenesis might be promoted in sporadic Alzheimer's disease, the most prevalent and least well understood form of the disease. Primary lysosomal dysfunction has historically been linked to neurodegeneration. New data now directly implicate cathepsins as proteases capable of initiating, as well as executing, cell death programs in certain pathologic states. These and other studies support the view that the progressive alterations of lysosomal function observed during aging and Alzheimer's disease contribute importantly to the neurodegenerative process in Alzheimer's disease.

Proteases cathepsin D apoptosis β-amyloid amyloid precursor protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roberts, P. J. 1979. Biochemistry of dementia: based on a Workshop on Biochemistry of the Dementias, held at University of Southampton. Chichester; New York: Wiley, c1980, New York.Google Scholar
  2. 2.
    Goedert, M. 1993. Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends Neurosci. 16:460-465.Google Scholar
  3. 3.
    Beyreuther, K., Pollwein, P., Multhaup, G., Monning, U., Konig, G., Dyrks, T., Schubert, W., and Masters, C. L. 1993. Regulation and expression of the Alzheimer's beta/A4 amyloid protein precursor in health, disease, and Down's syndrome. Ann. NY Acad. Sci. 695:91-102.Google Scholar
  4. 4.
    Selkoe, D. J. 1994. Normal and abnormal biology of the betaamyloid precursor protein. Annu. Rev. Neurosci. 17:489-517.Google Scholar
  5. 5.
    Braak, H. and Braak, E. 1992. The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci. Res. 15:6-31.Google Scholar
  6. 6.
    Heston, L. L., Mastri, A. R., Anderson, V. E., and White, J. 1981. Dementia of the Alzheimer type. Clinical genetics, natural history, and associated conditions. Arch. Gen. Psychiatry 38:1085-1090.Google Scholar
  7. 7.
    Mullan, M. and Crawford, F. 1993. Genetic and molecular advances in Alzheimer's disease. Trends Neurosci. 16:398-403.Google Scholar
  8. 8.
    Mattson, M. P., Barger, S. W., Cheng, B., Lieberburg, I., Smith-Swintosky, V. L., and Rydel, R. E. 1993. beta-Amyloid precursor protein metabolites and loss of neuronal Ca2+homeostasis in Alzheimer's disease. Trends Neurosci. 16:409-414.Google Scholar
  9. 9.
    Selkoe, D. J. 1993. Physiological production of the beta-amyloid protein and the mechanism of Alzheimer's disease. Trends Neurosci. 16:403-409.Google Scholar
  10. 10.
    Borchelt, D. R., Thinakaran, G., Eckman, C. B., Lee, M. K., Davenport, F., Ratovitsky, T., Prada, C. M., Kim, G., Seekins, S., Yager, D., Slunt, H. H., Wang, R., Seeger, M., Levey, A. I., Gandy, S. E., Copeland, N. G., Jenkins, N. A., Price, D. L., Younkin, S. G., and Sisodia, S. S. 1996. Familial Alzheimer's disease-linked presenilin 1 variants elevate Aβ1-42/1-40 ratio in vitro and in vivo. Neuron 17:1005-1013.Google Scholar
  11. 11.
    Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., Johnson-Wood, K., Lee, M., Seubert, P., Davis, A., Kholodenko, D., Motter, R., Sherrington, R., Perry, B., Yao, H., Strome, R., Lieberburg, I., Rommens, J., Kim, S., Schenk, D., Fraser, P., St George Hyslop, P., and Selkoe, D. J. 1997. Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice [see comments]. Nat. Med. 3:67-72.Google Scholar
  12. 12.
    Duff, K., Eckman, C., Zehr, C., Yu, X., Prada, C. M., Pereztur, J., Hutton, M., Buee, L., Harigaya, Y., Yager, D., Morgan, D., Gordon, M. N., Holcomb, L., Refolo, L., Zenk, B., Hardy, J., and Younkin, S. 1996. Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383: 710-713.Google Scholar
  13. 13.
    Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., Bird, T. D., Hardy, J., Hutton, M., Kukull, W., Larson, E., Levy-Lahad, E., Viitanen, M., Peskind, E., Poorkaj, P., Schellenberg, G., Tanzi, R., Wasco, W., Lannfelt, L., Selkoe, D., and Younkin, S. 1996. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease [see comments]. Nat. Med. 2:864-870.Google Scholar
  14. 14.
    Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K., and Tsuda, T. 1995. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376:775-778.Google Scholar
  15. 15.
    Wolozin, B., Iwasaki, K., Vito, P., Ganjei, J. K., Lacana, E., Sunderland, T., Zhao, B., Kusiak, J. W., Wasco, W., and D'Adamio, L. 1996. Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 274:1710-1713.Google Scholar
  16. 16.
    Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., and Pericak-Vance, M. A. 1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families [see comments]. Science 261:921-923.Google Scholar
  17. 17.
    Riezman, H., Woodman, P. G., van Meer, G., and Marsh, M. 1997. Molecular mechanisms of endocytosis. Cell 91:731-738.Google Scholar
  18. 18.
    Gabel, C. A., Goldberg, D. E., and Kornfeld, S. 1983. Identification and characterization of cells deficient in the mannose 6-phosphate receptor: evidence for an alternate pathway for lysosomal enzyme targeting. Proc. Natl. Acad. Sci. USA 80:775-779.Google Scholar
  19. 19.
    Stein, M., Zijderhand-Bleekemolen, J. E., Geuze, H., Hasilik, A., and von Figura, K. 1987. Mr 46,000 mannose 6-phosphate specific receptor: its role in targeting of lysosomal enzymes. Embo. J. 6:2677-2681.Google Scholar
  20. 20.
    Clague, M. J. 1998. Molecular aspects of the endocytic pathway [In Process Citation]. Biochem. J. 336:271-282.Google Scholar
  21. 21.
    Mahley, R. W. 1988. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622-630.Google Scholar
  22. 22.
    Gutman, C. R., Strittmatter, W. J., Weisgraber, K. H., and Matthew, W. D. 1997. Apolipoprotein E binds to and potentiates the biological activity of ciliary neurotrophic factor. J. Neurosci. 17:6114-6121.Google Scholar
  23. 23.
    Laskowitz, D. T., Horsburgh, K., and Roses, A. D. 1998. Apolipoprotein E and the CNS response to injury. J. Cereb. Blood Flow Metab. 18:465-41.Google Scholar
  24. 24.
    Permanne, B., Perez, C., Soto, C., Frangione, B., and Wisniewski, T. 1997. Detection of apolipoprotein E/dimeric soluble amyloid beta complexes in Alzheimer's disease brain supernatants. Biochem. Biophys. Res. Commun. 240:715-720.Google Scholar
  25. 25.
    Webster, S. and Rogers, J. 1996. Relative efficacies of amyloid beta peptide (A beta) binding proteins in A beta aggregation. J. Neurosci. Res. 46:58-66.Google Scholar
  26. 26.
    Wood, S. J., Chan, W., and Wetzel, R. 1996. Seeding of A beta fibril formation is inhibited by all three isotypes of apolipoprotein E. Biochemistry 35:12623-12628.Google Scholar
  27. 27.
    Jordan, J., Galindo, M. F., Miller, R. J., Reardon, C. A., Getz, G. S., and LaDu, M. J. 1998. Isoform-specific effect of apolipoprotein E on cell survival and beta-amyloid-induced toxicity in rat hippocampal pyramidal neuronal cultures. J. Neurosci. 18:195-204.Google Scholar
  28. 28.
    Miyata, M. and Smith, J. D. 1996. Apolipoprotein E allelespecific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat. Genet. 14:55-61.Google Scholar
  29. 29.
    Casadei, V. M. 1999. APOE-491 promoter polymorphism is a risk factor for late-onset Alzheimer's disease. Neurology 53:1888-1889.Google Scholar
  30. 30.
    Papassotiropoulos, A., Bagli, M., Kurz, A., Kornhuber, J., Forstl, H., Maier, W., Pauls, J., Lautenschlager, N., and Heun, R. 2000. A genetic variation of cathepsin D is a major risk factor for Alzheimer's disease. Ann. Neurol. 47:399-403.Google Scholar
  31. 31.
    Kamboh, M. I., Ferrell, R. E., and DeKosky, S. T. 1998. Genetic association studies between Alzheimer's disease and two polymorphisms in the low density lipoprotein receptor-related protein gene. Neurosci. Lett. 244:65-68.Google Scholar
  32. 32.
    King, N. D. and O'Brian., M. R. 1997. Identificatin of the Irp gene in Bradyrhizobium japonicum and its role in regulation of delta-aminolevulinic acid uptake. J. Bacteriol. 179:1828-31.Google Scholar
  33. 33.
    Tanzi, R. E., Kovacs, D. M., Kim, T. W., Moir, R. D., Guenette, S. Y., and Wasco, W. 1996. The gene defects responsible for familial Alzheimer's disease. Neurobiol. Dis. 3:159-168.Google Scholar
  34. 34.
    Wavrant-DeVrieze, F., Perez-Tur, J., Lambert, J. C., Frigard, B., Pasquier, F., Delacourte, A., Amouyel, P., Hardy, J., and Chartier-Harlin, M. C. 1997. Association between the low density lipoprotein receptor-related protein (LRP) and Alzheimer's disease. Neurosci. Lett. 227:68-70.Google Scholar
  35. 35.
    Papassotiropoulos, A., Bagli, M., Feder, O., Jessen, F., Maier, W., Rao, M. L., Ludwig, M., Schwab, S. G., and Heun, R. 1999. Genetic polymorphism of cathepsin D is strongly associated with the risk for developing sporadic Alzheimer's disease. Neurosci. Lett. 262:171-174.Google Scholar
  36. 36.
    Yamanaka, H., Kamimura, K., Tanahashi, H., Takahashi, K., Asada, T., and Tabira, T. 1998. Genetic risk factors in Japanese Alzheimer's disease patients: alpha1-ACT, VLDLR, and ApoE. Neurobiol. Aging. 19:S43-46.Google Scholar
  37. 37.
    Hu, Q., Kukull, W. A., Bressler, S. L., Gray, M. D., Cam, J. A., Larson, E. B., Martin, G. M., and Deeb, S. S. 1998. The human FE65 gene:genomic structure and an intronic biallelic polymorphism associated with sporadic dementia of the Alzheimer type. Human Genetics 103:295-303.Google Scholar
  38. 38.
    Blacker, D., Wilcox, M. A., Laird, N. M., Rodes, L., Horvath, S. M., Go, R. C., Perry, R., Watson, B., Jr., Bassett, S. S., McInnis, M. G., Albert, M. S., Hyman, B. T., and Tanzi, R. E. 1998. Alpha-2 macroglobulin is genetically associated with Alzheimer disease [see comments]. Nat. Genet. 19:357-360.Google Scholar
  39. 39.
    Liao, A., Nitsch, R. M., Greenberg, S. M., Finckh, U., Blacker, D., Albert, M., Rebeck, G. W., Gomez-Isla, T., Clatworthy, A., Binetti, G., Hock, C., Mueller-Thomsen, T., Mann, U., Zuchowski, K., Beisiegel, U., Staehelin, H., Growdon, J. H., Tanzi, R. E., and Hyman, B. T. 1998. Genetic association of an alpha2-macroglobulin (Val10001le) polymorphism and Alzheimer's disease. Hum. Mol. Genet. 7:1953-1956.Google Scholar
  40. 40.
    Montoya, S. E., Aston, C. E., DeKosky, S. T., Kamboh, M. I., Lazo, J. S., and Ferrel, R. E. 1998. Bleomycin hydrolase is associated with risk of sporadic Alzheimer's disease. Nat. Genet. 18:211-212.Google Scholar
  41. 41.
    Farrer, L. A., Abraham, C. R., Haines, J. L., Rogaeva, E. A., Song, Y., McGraw, W. T., Brindle, N., Premkumar, S., Scott, W. K., Yamaoka, L. H., Saunders, A. M., Roses, A. D., Auerbach, S. A., Sorbi, S., Duara, R., Pericak-Vance, M. A., and St. George-Hyslop, P. H. 1998. Association between bleomycin hydrolase and Alzheimer's disease in caucasians. Ann. Neurol. 44:808-811.Google Scholar
  42. 42.
    Grimaldi, L. M., Casadei, V. M., Ferri, C., Veglia, F., Licastro, F., Annoni, G., Biunno, I., De Bellis, G., Sorbi, S., Mariani, C., Canal, N., Griffin, W. S., and Franceschi, M. 2000. Association of early-onset Alzheimer's disease with an interleukin-1 alpha gene polymorphism [see comments]. Ann. Neurol. 47:361-365.Google Scholar
  43. 43.
    Nicoll, J. A., Mrak, R. E., Graham, D. I., Stewart, J., Wilcock, G., MacGowan, S., Esiri, M. M., Murray, L. S., Dewar, D., Love, S., Moss, T., and Griffin, W. S. 2000. Association of interleukin-1 gene polymorphisms with Alzheimer's disease [see comments]. Ann. Neurol. 47:365-368.Google Scholar
  44. 44.
    Hyman, B. T., Gomez-Isla, T., Briggs, M., Chung, H., and Nichols, S. 1996. Apolipoprotein E and cognitive change in an elderly population. Ann. Neurol. 40:55-66.Google Scholar
  45. 45.
    Roses, A. D. 1995. On the metabolism of apolipoprotein E and the Alzheimer diseases. Exp. Neurol. 132:149-156.Google Scholar
  46. 46.
    Roses, A. D. 1995. Apolipoprotein E genotyping in the differential diagnosis, not prediction, of Alzheimer's disease. Ann. Neurol. 38:6-14.Google Scholar
  47. 47.
    Sekijima, Y., Ikeda, S., Tokuda, T., Satoh, S., Hidaka, H., Hidaka, E., Ishikawa, M., and Yanagisawa, N. 1998. Prevalence of dementia of Alzheimer type and apolipoprotein E phenotypes in aged patients with Down's syndrome. Eur. Neurol. 39:234-237.Google Scholar
  48. 48.
    Sabo, S. L., Lanier, L. M., Ikin, A. F., Khorkova, O., Sahasrabudhe, S., Greengard, P., and Buxbaum, J. D. 1999. Regulation of beta-amyloid secretion by FE65, an amyloid protein precursor-binding protein. J. Biol. Chem. 274:7952-7957.Google Scholar
  49. 49.
    Chyung, A. S. C., Greenberg, B. D., Cook, D. G., Doms, R. W., and Lee, V. M. 1997. Novel beta-secretase cleavage of beta-amyloid precursor protein in the endoplasmic reticulum/intermediate compartment of NT2N cells. J. Cell Biol. 138:671-680.Google Scholar
  50. 50.
    Cook, D. G., Forman, M. S., Sung, J. C., Leight, S., Kolson, D. L., Iwatsubo, T., Lee, V. M., and Doms, R. W. 1997. Alzheimer's A beta(1-42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nat. Med. 3:1021-1023.Google Scholar
  51. 51.
    Hartmann, H., Busciglio, J., Baumann, K. H., Staufenbiel, M., and Yankner, B. A. 1997. Developmental regulation of presenilin-1 processing in the brain suggests a role in neuronal differentiation. J. Biol. Chem. 272:14505-14508.Google Scholar
  52. 52.
    Xia, W., Zhang, J., Ostaszewski, B. L., Kimberly, W. T., Seubert, P., Koo, E. H., Shen, J., and Selkoe, D. J. 1998. Presenilin 1 regulates the processing of beta-amyloid precursor protein C-terminal fragments and the generation of amyloid betaprotein in endoplasmic reticulum and Golgi. Biochemistry 37:16465-16471.Google Scholar
  53. 53.
    Peraus, G. C., Masters, C. L., and Beyreuther, K. 1997. Late compartments of amyloid precursor protein transport in SY5Y cells are involved in beta-amyloid secretion. J. Neurosci. 17:7714-7724.Google Scholar
  54. 54.
    Thinakaran, G., Borchelt, D. R., Lee, M. K., Slunt, H. H., Spitzer, L., Kim, G., Ratovitsky, T., Davenport, F., Nordstedt, C., Seeger, M., Hardy, J., Levey, A. I., Gandy, S. E., Jenkins, N. A., Copeland, N. G., Price, D. L., and Sisodia, S. S. 1996. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17:181-190.Google Scholar
  55. 55.
    Tomita, S., Kirino, Y., and Suzuki, T. 1998. Cleavage of Alzheimer's amyloid precursor protein (APP) by secretases occurs after O-glycosylation of APP in the protein secretory pathway. Identification of intracellular compartments in which APP cleavage occurs without using toxic agents that interfere with protein metabolism. J. Biol. Chem. 273:6277-6284.Google Scholar
  56. 56.
    Xu, H., Sweeney, D., Wang, R., Thinakaran, G., Lo, A. C., Sisodia, S. S., Greengard, P., and Gandy, S. 1997. Generation of Alzheimer beta-amyloid protein in the trans-Golgi network in the apparent absence of vesicle formation. Proc. Natl. Acad. Sci. USA 94:3748-3752.Google Scholar
  57. 57.
    Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D., and Teplow, D. B. 1992. Amyloid beta-peptide is produced by cultured cells during normal metabolism [see comments]. Nature 359:322-325.Google Scholar
  58. 58.
    Koo, E. H. and Squazzo, S. L. 1994. Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J. Biol. Chem. 269:17386-17389.Google Scholar
  59. 59.
    Soriano, S., Chen, X., Chyung, A. S. C., Lee, V. M.-Y., and Koo, B. 1998. Role of the Secretory and Endocytic Pathways in the Production of Amyloid beta-peptides alpha-beta 1-40 and alpha-beta 1-42 in 6th International conference on Alzheimer's Disease, Amsterdam.Google Scholar
  60. 60.
    Stokin, G. B., Chyung, A. S. C., Perez, R. G., Lee, V. M.-Y., and Koo, E. 1998. The pathway of alpha-beta 42 production in APP with codon 717 mutation in 6th International Conference on Alzheimer's Disease, Amsterdam.Google Scholar
  61. 61.
    Perez, R. G., Soriano, S., Hayes, J. D., Ostaszewski, B., Xia, W., Selkoe, D. J., Chen, X., Stokin, G. B., and Koo, E. H. 1999. Mutagenesis identifies new signals for beta-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including Abeta42. J. Biol. Chem. 274:18851-18856.Google Scholar
  62. 62.
    Cataldo, A. M., Barnett, J. L., Pieroni, C., and Nixon, R. A. 1997. Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer's disease: neuropathologic evidence for a mechanism of increased beta-amyloidogenesis. J. Neurosci. 17:6142-6151.Google Scholar
  63. 63.
    Cataldo, A., Peterhoff, C., Troncoso, J., T, G.-I., Hyman, B., and Nixon, R. 2000. Endocytic pathway abnormalities precede beta-amyloid deposition in sporadic Alzheimer's disease: differential effects of APOE genotype and presenilin mutations. Am. J. Pathol. 157:277-286.Google Scholar
  64. 64.
    Lai, F., Kammann, E., Rebeck, G. W., Anderson, A., Chen, Y., and Nixon, R. A. 1999. APOE genotype and gender effects on Alzheimer disease in 100 adults with Down syndrome. Neurology 53:331-336.Google Scholar
  65. 65.
    Gorvel, J. P., Chavrier, P., Zerial, M., and Gruenberg, J. 1991. rab5 controls early endosome fusion in vitro. Cell 64:915-925.Google Scholar
  66. 66.
    Bucci, C., Parton, R. G., Mather, I. H., Stunnenberg, H., Simons, K., Hoflack, B., and Zerial, M. 1992. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70:715-728.Google Scholar
  67. 67.
    de Hoop, M. J., Huber, L. A., Stenmark, H., Williamson, E., Zerial, M., Parton, R. G., and Dotti, C. G. 1994. The involvement of the small GTP-binding protein Rab5a in neuronal endocytosis. Neuron 13:11-22.Google Scholar
  68. 68.
    Roses, A. D. 1996. Apolipoprotein E alleles as risk factors in Alzheimer's disease. Annu. Rev. Med. 47:387-400.Google Scholar
  69. 69.
    Chavrier, P., Parton, R. G., Hauri, H. P., Simons, K., and Zerial, M. 1990. Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62:317-329.Google Scholar
  70. 70.
    van der Sluijs, P., Hull, M., Webster, P., Male, P., Goud, B., and Mellman, I. 1992. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 70:729-740.Google Scholar
  71. 71.
    Daro, E., van der Sluijs, P., Galli, T., and Mellman, I. 1996. Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling. Proc. Natl. Acad. Sci. USA 93:9559-9564.Google Scholar
  72. 72.
    Stenmark, H., Vitale, G., Ullrich, O., and Zerial, M. 1995. Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83:423-432.Google Scholar
  73. 73.
    Simonsen, A., Lippe, R., Christoforidis, S., Gaullier, J. M., Brech, A., Callaghan, J., Toh, B. H., Murphy, C., Zerial, M., and Stenmark, H. 1998. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion [see comments]. Nature 394:494-498.Google Scholar
  74. 74.
    Cataldo, A. M., Barnett, J., and Nixon, R. A. 1998. Influences of Aging, APOE E genotype and presenilin mutations on endocytic abnormalities in Alzheimer's disease. [abstract] Society for Neuroscience 24:721.Google Scholar
  75. 75.
    van Broeckhoven, C. 1995. Presenilins and Alzheimer disease. Nat. Genet. 11:230-232.Google Scholar
  76. 76.
    Houlden, H., Crook, R., Backhovens, H., Prihar, G., Baker, M., Hutton, M., Rossor, M., Martin, J. J., Van Broeckhoven, C., and Hardy, J. 1998. ApoE genotype is a risk factor in nonpresenilin early-onset Alzheimer's disease families. Am. J. Med. Genet. 81:117-121.Google Scholar
  77. 77.
    Mattson, M. P. and Guo, Q. 1997. Cell and molecular neurobiology of presenilins: a role for the endoplasmic reticulum in the pathogenesis of Alzheimer's disease? J. Neurosci. Res. 50: 505-513.Google Scholar
  78. 78.
    Stein, M., Braulke, T., Krentler, C., Hasilik, A., and von Figura, K. 1987. 46-kDa mannose 6-phosphate-specific receptor: biosynthesis, processing, subcellular location and topology. Biol. Chem. 368:937-947.Google Scholar
  79. 79.
    Chevallier, N., Vizzavona, J., Marambaud, P., Baur, C. P., Spillantini, M., Fulcrand, P., Martinez, J., Goedert, M., Vincent, J. P., and Checler, F. 1997. Cathepsin D displays in vitro beta-secretase-like specificity. Brain Res. 750:11-19.Google Scholar
  80. 80.
    Dreyer, R. N., Bausch, K. M., Fracasso, P., Hammond, L. J., Wunderlich, D., Wirak, D. O., Davis, G., Brini, C. M., Buckholz, T. M., and Konig, G. 1994. Processing of the pre-beta-amyloid protein by cathepsin D is enhanced by a familial Alzheimer's disease mutation. Eur. J. Biochem. 224:265-271.Google Scholar
  81. 81.
    Evin, G., Cappai, R., Li, Q. X., Culvenor, J. G., Small, D. H., Beyreuther, K., and Masters, C. L. 1995. Candidate gammasecretases in the generation of the carboxyl terminus of the Alzheimer's disease beta A4 amyloid: possible involvement of cathepsin D. Biochemistry 34:14185-14192.Google Scholar
  82. 82.
    Mackay, E. A., Ehrhard, A., Moniatte, M., Guenet, C., Tardif, C., Tarnus, C., Sorokine, O., Heintzelmann, B., Nay, C., Remy, J. M., Higaki, J., Van Dorsselaer, A., Wagner, J., Danzin, C., and Mamont, P. 1997. A possible role for cathepsins D, E, and B in the processing of beta-amyloid precursor protein in Alzheimer's disease. Eur. J. Biochem. 244:414-425.Google Scholar
  83. 83.
    Lippa, C. F., Saunders, A. M., Smith, T. W., Swearer, J. M., Drachman, D. A., Ghetti, B., Nee, L., Pulaski-Salo, D., Dickson, D., Robitaille, Y., Bergeron, C., Crain, B., Benson, M. D., Farlow, M., Hyman, B. T., George-Hyslop, S. P., Roses, A. D., and Pollen, D. A. 1996. Familial and sporadic Alzheimer's disease: neuropathology cannot exclude a final common pathway. Neurology 46:406-412.Google Scholar
  84. 84.
    Roth, M. G., Doyle, C., Sambrook, J., and Gething, M. J. 1986. Heterologous transmembrane and cytoplasmic domains direct functional chimeric influenza virus hemagglutinins into the endocytic pathway. J. Cell Biol. 102:1271-1283.Google Scholar
  85. 85.
    Mathews, P. M., Jiang, Y., C. B., G., Schmidt, S. D., Peterhoff, C. M., Cataldo, A. M., and Nixon, R. A. 2000. Accelerated A-beta generation in AD models of lysosomal system upregulation. [abstract] in World Alzheimer Congress 2000, Washington D.C.Google Scholar
  86. 86.
    Seglen, P. O., Gordon, P. B., and Holen, I. 1990. Non-selective autophagy. Cell Biol. 1:41-48.Google Scholar
  87. 87.
    Nixon, R. A. and Cataldo, A. M. 1995. The endosomal-lysosomal system of neurons: new roles. Trends Neurosci. 18:489-496.Google Scholar
  88. 88.
    Cataldo, A. M., Barnett, J. L., Berman, S. A., Li, J., Quarless, S., Bursztajn, S., Lippa, C., and Nixon, R. A. 1995. Gene expression and cellular content of cathepsin D in Alzheimer's disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron 14:671-680.Google Scholar
  89. 89.
    Schwagerl, A. L., Mohan, P. S., Cataldo, A. M., Vonsattel, J. P., Kowall, N. W., and Nixon, R. A. 1995. Elevated levels of the endosomal-lysosomal proteinase cathepsin D in cerebrospinal fluid in Alzheimer disease. J. Neurochem. 64:443-446.Google Scholar
  90. 90.
    Mathews, P. M., Cataldo, A. M., Duff, K. E., Jiang, Y., Peterhoff, C. M., Picciano, M. J., Beard, M. E., and Nixon, R. A. 1999. Lysosomal system activation in presenilin 1-linked familial Alzheimer's disease. [abstract] in Society for Neuroscience, Miami, Florida.Google Scholar
  91. 91.
    Cataldo, A. M., Hamilton, D. J., and Nixon, R. A. 1994. Lysosomal abnormalities in degenerating neurons link neuronal compromise to senile plaque development in Alzheimer disease. Brain Res. 640:68-80.Google Scholar
  92. 92.
    Callahan, L. M., Vaules, W. A., and Coleman, P. D. 1999. Quantitative decrease in synaptophysin message expression and increase in cathepsin D message expression in Alzheimer disease neurons containing neurofibrillary tangles. J. Neuropathol. Exp. Neurol. 58:275-287.Google Scholar
  93. 93.
    Green, G. D. and Shaw, E. 1981. Peptidyl diazomethyl ketones are specific inactivators of thiol proteinases. J. Biol. Chem. 256: 1923-1928.Google Scholar
  94. 94.
    Nixon, R. A. and Cataldo, A. M. 1993. The lysosomal system in neuronal cell death: a review. Ann. NY Acad. Sci. 679:87-109.Google Scholar
  95. 95.
    Bednarski, E., Ribak, C. E., and Lynch, G. 1997. Suppression of cathepsins B and L causes a proliferation of lysosomes and the formation of meganeurites in hippocampus. J. Neurosci. 17:4006-4021.Google Scholar
  96. 96.
    Bednarski, E., Lauterborn, J. C., Gall, C. M., and Lynch, G. 1998. Lysosomal dysfunction reduces brain-derived neurotrophic factor expression. Exp. Neurol. 150:128-135.Google Scholar
  97. 97.
    Ivy, G. O., Kitani, K., and Ihara, Y. 1989. Anomalous accumulation of tau and ubiquitin immunoreactivities in rat brain caused by protease inhibition and by normal aging: a clue to PHF pathogenesis? Brain Res. 498:360-365.Google Scholar
  98. 98.
    Yang, A. J., Chandswangbhuvana, D., Margol, L., and Glabe, C. G. 1998. Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Abeta 1-42 pathogenesis. J. Neurosci. Res. 52:691-698.Google Scholar
  99. 99.
    Cataldo, A. M., Barnett, J. L., Mann, D. M., and Nixon, R. A. 1996. Colocalization of lysosomal hydrolase and beta-amyloid in diffuse plaques of the cerebellum and striatum in Alzheimer's disease and Down's syndrome. J. Neuropathol. Exp. Neurol. 55:704-715.Google Scholar
  100. 100.
    Cataldo, A. M., Paskevich, P. A., Kominami, E., and Nixon, R. A. 1991. Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer disease [published erratum appears in Proc Natl Acad Sci USA 1992 Mar 15;89(6):2509]. Proc. Natl. Acad. Sci. USA 88:10998-11002.Google Scholar
  101. 101.
    Cataldo, A. M., Thayer, C. Y., Bird, E. D., Wheelock, T. R., and Nixon, R. A. 1990. Lysosomal proteinase antigens are prominently localized within senile plaques of Alzheimer's disease: evidence for a neuronal origin. Brain Res. 513:181-192.Google Scholar
  102. 102.
    Helpern, J., Dyakin, V., Ardekani, B., Duff, K., Wisniewski, T., de Leon, M., Branch, C., O'Shea, J., and Nixon, R. 2000. High-field MRI of neuropathology in the PS-APP transgenic mouse in World Alzheimer Congress 2000, Washington, D.C.Google Scholar
  103. 103.
    Touitou, I., Capony, F., Brouillet, J. P., and Rochefort, H. 1994. Missense polymorphism (C/T224) in the human cathepsin D pro-fragment determined by polymerase chain reaction-single strand conformational polymorphism analysis and possible consequences in cancer cells. Eur. J. Cancer 3:390-394.Google Scholar
  104. 104.
    McIlroy, S. P., Dynan, K. B., McGleenon, B. M., Lawson, J. T., and Passmore, A. P. 1999. Cathepsin D gene exon 2 polymorphism and sporadic Alzheimer's disease. Neurosci. Lett. 273:140-1.Google Scholar
  105. 105.
    Pope, A., Amelotte, J. A., Belfer, H., and Nixon, R. A. 1981. Protease activities in normal and schizophrenic human prefrontal cortex and white matter. Neurochem. Res. 6:1043-1052.Google Scholar
  106. 106.
    Cohen, G. M. 1997. Caspases: the executioners of apoptosis. Biochem. J. 326, 1-16.Google Scholar
  107. 107.
    Wang, K. K., Posmantur, R., Nadimpalli, R., Nath, R., Mohan, P., Nixon, R. A., Talanian, R. V., Keegan, M., Herzog, L., and Allen, H. 1998. Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch. Biochem. Biophys. 356:187-196.Google Scholar
  108. 108.
    Marks, N., Berg, M. J., Guidotti, A., and Saito, M. 1998. Activation of caspase-3 and apoptosis in cerebellar granule cells. J. Neurosci. Res. 52:334-341.Google Scholar
  109. 109.
    Masliah, E., Mallory, M., Alford, M., Tanaka, S., and Hansen, L. A. 1998. Caspase dependent DNA fragmentation might be associated with excitotoxicity in Alzheimer disease. J. Neuropathol. Exp. Neurol. 57:1041-1052.Google Scholar
  110. 110.
    Skulachev, V. P. 1998. Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett. 423:275-280.Google Scholar
  111. 111.
    Zamzami, N., Marzo, I., Susin, S. A., Brenner, C., Larochette, N., Marchetti, P., Reed, J., Kofler, R., and Kroemer, G. 1998. The thiol crosslinking agent diamide overcomes the apoptosisinhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition. Oncogene 16:1055-1063.Google Scholar
  112. 112.
    Kroemer, G. 1997. The proto-oncogene Bcl-2 and its role in regulating apoptosis [published erratum appears in Nat Med 1997 Aug;3(8):934]. Nat. Med. 3:614-20.Google Scholar
  113. 113.
    Reed, J. C. 1997. Bcl-2 family proteins: strategies for overcoming chemoresistance in cancer. Adv. Pharmacol. 41:501-532.Google Scholar
  114. 114.
    Salomons, G. S., Brady, H. J., Verwijs-Janssen, M., Van Den Berg, J. D., Hart, A. A., Van Den Berg, H., Behrendt, H., Hahlen, K., and Smets, L. A. 1997. The Bax alpha:Bcl-2 ratio modulates the response to dexamethasone in leukaemic cells and is highly variable in childhood acute leukaemia. Int. J. Cancer 71:959-965.Google Scholar
  115. 115.
    Xiang, J., Chao, D. T., and Korsmeyer, S. J. 1996. BAX-induced cell death may not require interleukin 1 beta-converting enzymelike proteases. Proc. Natl. Acad. Sci. USA 93:14559-563.Google Scholar
  116. 116.
    Deiss, L. P., Galinka, H., Berissi, H., Cohen, O., and Kimchi, A. 1996. Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J. 15:3861-70.Google Scholar
  117. 117.
    Shibata, M., Kanamori, S., Isahara, K., Ohsawa, Y., Konishi, A., Kametaka, S., Watanabe, T., Ebisu, S., Ishido, K., Kominami, E., and Uchiyama, Y. 1998. Participation of cathepsins B and D in apoptosis of PC12 cells following serum deprivation. Biochem. Biophys. Res. Commun. 251:199-203.Google Scholar
  118. 118.
    Wu, G. S., Saftig, P., Peters, C., and El-Deiry, W. S. 1998. Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity. Oncogene 16:2177-2183.Google Scholar
  119. 119.
    Isahara, K., Ohsawa, Y., Kanamori, S., Shibata, M., Waguri, S., Sato, N., Gotow, T., Watanabe, T., Momoi, T., Urase, K., Kominami, E., and Uchiyama, Y. 1999. Regulation of a novel pathway for cell death by lysosomal aspartic and cysteine proteinases. Neuroscience 91:233-249.Google Scholar
  120. 120.
    McVicker, B. L. and Casey, C. A. 1999. Ethanol-impaired hepatic protein trafficking: concepts from the asialoglycoprotein receptor system. Clin. Biochem. 32:557-61.Google Scholar
  121. 121.
    Calkins, C. C., Sameni, M., Koblinski, J., Sloane, B. F., and Moin, K. 1998. Differential localization of cysteine protease inhibitors and a target cysteine protease, cathepsin B, by immuno-confocal microscopy. J. Histochem. Cytochem. 46:745-751.Google Scholar
  122. 122.
    Shibata, T., Shimoyama, I., Ito, T., Abla, D., Iwasa, H., Koseki, K., Yamanouchi, N., Sato, T., and Nakajima, Y. 1998. The synchronization between brain areas under motor inhibition process in humans estimated by event-related EEG coherence. Neurosci. Res. 31:265-271.Google Scholar
  123. 123.
    Roberg, K. and Ollinger, K. 1998. Oxidative stress causes relocation of the lysosomal enzyme cathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes. Am. J. Pathol. 152: 1151-1156.Google Scholar
  124. 124.
    Hellquist, H. B., Svensson, I., and Brunk, U. T. 1997. Oxidantinduced apoptosis: a consequence of lethal lysosomal leak? Redox Report 3:65-70.Google Scholar
  125. 125.
    Fossel, E. T., Zanella, C. L., Fletcher, J. G., and Hui, K. K. 1994. Cell death induced by peroxidized low-density lipoprotein: endopepsis. Cancer Res. 54:1240-1248.Google Scholar
  126. 126.
    Brunk, U. T., Dalen, H., Roberg, K., and Hellquist, H. B. 1997. Photo-oxidative disruption of lysosomal membranes causes apoptosis of cultured human fibroblasts. Free Radic. Biol. Med. 23:616-626.Google Scholar
  127. 127.
    Ollinger, K. 2000. Inhibition of cathepsin D prevents free-radical-induced apoptosis in rat cardiomyocytes. Arch. Biochem. Biophys. 373:346-351.Google Scholar
  128. 128.
    Roberg, K., Johansson, U., and Ollinger, K. 1999. Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic. Biol. Med. 27:1228-1237.Google Scholar
  129. 129.
    Kessels, M. M., Engqvist-Goldstein, A. E., and Drubin, D. G. 2000. Association of mouse actin-binding protein 1 (mAbpl/SH3P7), an Src kinase target, with dynamic regions of the cortical actin cytoskeleton in response to Rac 1 activation. Mol. Biol. Cell 11:393-412.Google Scholar
  130. 130.
    Heinrich, M., Wickel, M., Schneider-Brachert, W., Sandberg, C., Gahr, J., Schwandner, R., Weber, T., Saftig, P., Peters, C., Brunner, J., Kronke, M., and Schutze, S. 1999. Cathepsin D targeted by acid sphingomyelinase-derived ceramide [published erratum appears in EMBO J 2000 Jan 17;19(2):315]. EMBO J. 8:5252-5263.Google Scholar
  131. 131.
    Yamashima, T., Kohda, Y., Tsuchiya, K., Ueno, T., Yamashita, J., Yoshioka, T., and Kominami, E. 1998. Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: a novel strategy for neuroprotection based on 'calpain-cathepsin hypothesis'. Eur. J. Neurosci. 10: 1723-1733.Google Scholar
  132. 132.
    Kinscherf, R., Claus, R., Wagner, M., Gehrke, C., Kamencic, H., Hou, D., Nauen, O., Schmiedt, W., Kovacs, G., Pill, J., Metz, J., and Deigner, H. P. 1998. Apoptosis caused by oxidized LDL is manganese superoxide dismutase and p53 dependent. FASEB J. 12:461-467.Google Scholar
  133. 133.
    Martin, A., Wu, D., Meydani, S., Blumberg, J., and Meydani, M. 1998. Vitamin E protects human aortic endothelial cells from cytotoxic injury induced by oxidized LDL in vitro. Nutritional Biochem. 9:201-208.Google Scholar
  134. 134.
    Sawamura, T., Kume, N., Aoyama, T., Moriwaki, H., Hoshikawa, H., Aiba, Y., Tanaka, T., Miwa, S., Katsura, Y., Kita, T., and Masaki, T. 1997. An endothelial receptor for oxidized low-density lipoprotein. Nature 386:73-77.Google Scholar
  135. 135.
    Li, W., Yuan, X. M., Olsson, A. G., and Brunk, U. T. 1998. Uptake of oxidized LDL by macrophages results in partial lysosomal enzyme inactivation and relocation. Arterioscler. Thromb. Vasc. Biol. 18:177-184.Google Scholar
  136. 136.
    Dehouck, B., Fenart, L., Dehouck, M. P., Pierce, A., Torpier, G., and Cecchelli, R. 1997. A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J. Cell Biol. 138:877-889.Google Scholar
  137. 137.
    Shwaery, G. T., Vita, J. A., and Keaney, J. F., Jr. 1998. Antioxidant protection of LDL by physiologic concentrations of estrogens is specific for 17-beta-estradiol. Atherosclerosis 138:255-262.Google Scholar
  138. 138.
    Negre-Salvayre, A., Pieraggi, M. T., Mabile, L., and Salvayre, R. 1993. Protective effect of 17 beta-estradiol against the cytotoxicity of minimally oxidized LDL to cultured bovine aortic endothelial cells. Atherosclerosis 99:207-217.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Ralph A. Nixon
    • 1
    • 2
  • Anne M. Cataldo
    • 1
    • 3
  • Paul M. Mathews
    • 1
    • 4
  1. 1.Nathan Kline InstituteOrangeburg
  2. 2.Departments of Psychiatry and Cell Biology New YorkUniversity School of MedicineNew YorkNew York
  3. 3.McLean HospitalHarvard Medical SchoolBelmont
  4. 4.Departments of PsychiatryUSA

Personalised recommendations