Machine Learning

, Volume 43, Issue 1–2, pp 53–80 | Cite as

Relational Instance-Based Learning with Lists and Terms

  • Tamás Horváth
  • Stefan Wrobel
  • Uta Bohnebeck
Article

Abstract

The similarity measures used in first-order IBL so far have been limited to the function-free case. In this paper we show that a lot of power can be gained by allowing lists and other terms in the input representation and designing similarity measures that work directly on these structures. We present an improved similarity measure for the first-order instance-based learner ribl that employs the concept of edit distances to efficiently compute distances between lists and terms, discuss its computational and formal properties, and empirically demonstrate its additional power on a problem from the domain of biochemistry. The paper also includes a thorough reconstruction of ribl's overall algorithm.

inductive logic programming relational instance-based learning 

References

  1. Aha, D. (1997). Lazy learning. Dordrecht: Kluwer Academic Publishers.Google Scholar
  2. Aha, D., Kibler, D.,& Albert, M. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37–66.Google Scholar
  3. Aho, A. (1990). Algorithms for finding patterns in strings. In J. van Leeuwen (Ed.), Handbook of theoretical computer science, algorithms and complexity, (Vol. A). Amsterdam: Elsevier.Google Scholar
  4. Belasco, J. G.& Brawerman G. (1993). Control of Messenger RNA Stability. Oxford: Academic Press.Google Scholar
  5. Bisson, G. (1992a). Conceptual clustering in a first-order logic representation. In Proceedings of the Tenth European Conference on Artificial Intelligence (pp. 458–462). Chichester: John Wiley and Sons.Google Scholar
  6. Bisson, G. (1992b). Learning in FOL with a similarity measure. In Proceedings of the Tenth National Conference on Artificial Intelligence (pp. 82–87). Cambridge: The MIT Press.Google Scholar
  7. Bohnebeck, U., Horváth, T.,& Wrobel, S. (1998a). Term comparisons in first-order similarity measures. In Proceedings of the Eighth International Conference on Inductive Logic Programming, (pp. 65–79). Berlin: Springer. Vol. 1446 of Lecture Notes in Artificial Intelligence.Google Scholar
  8. Bohnebeck, U., Sälter, W., Horváth, T., Wrobel, S.,& Blohm, D. (1998b). Measuring similarity of RNA structures by relational instance-based learning: A first step toward detecting RNA signal structures in silico. In Proceedings of the German Conference on Bioinformatics. Technical Report, Universität Köln.Google Scholar
  9. Džeroski, S., Schulze-Kremer, S., Heidtke, K., Siems, K.,& Wettschereck, D. (1996). Diterpene structure elucidation from 13C NMR spectra with machine learning. In N. Lavrač, E. Keravnou,& B. Zupan (Eds.), Intelligent data analysis in medicine and pharmacology, Dordrecht: Kluwer Academic Publishers.Google Scholar
  10. Eiter, T.& Mannila, H. (1997). Distance measures for point sets and their computation. Acta Informatica, 34(2), 109–133.Google Scholar
  11. Emde, W.& Wettschereck, D. (1996). Relational instance-based learning. In Proceedings of the Thirteenth International Conference on Machine Learning (pp. 122–130). San Mateo: Morgan Kaufmann.Google Scholar
  12. Horváth, T., Alexin, Z., Gyimóthy, T.,& Wrobel, S. (1999). Application of different learning methods to Hungarian part-of-speech tagging. In Proceedings of the Ninth International Workshop on Inductive Logic Programming, (pp. 128–139). Berlin: Springer. Vol. 1634 of Lecture Notes in Artificial Intelligence.Google Scholar
  13. Hutchinson, A. (1997). Metrics on terms and clauses. In Proceedings of the Ninth European Conference on Machine Learning, (pp. 138–145). Berlin: Springer. Vol. 1224 of Lecture Notes in Artificial Intelligence.Google Scholar
  14. Klausner, R. D., Rouault, T. A.,& Harford J. B. (1993). Regulating the fate of mRNA: The control of cellular iron metabolism. Cell, 72, 19–28.Google Scholar
  15. Low, S. L.& Berry, M. J. (1996). Knowing when not to stop: Selenocysteine incorporation in eukaryotes. Trends in Biochemistry Sciences, 21, 203–208.Google Scholar
  16. McCarthy, J. E. G.& Kollmus, H. (1995). Cytoplasmic mRNA-protein interactions in eukaryotic gene expression. Trends in Biochemistry Sciences, 20, 191–197.Google Scholar
  17. Muggleton, S.& De Raedt, L. (1994). Inductive logic programming: Theory and methods. Journal of Logic Programming, 19/20, 629–679.Google Scholar
  18. Nienhuys-Cheng, S.-H. (1997). Distance Between Herbrand Interpretations: A measure for approximations to a target concept. In Proceedings of the Seventh International Workshop on Inductive Logic Programming, (pp. 213–226). Berlin: Springer. Vol. 1297 of Lecture Notes in Artificial Intelligence.Google Scholar
  19. Nienhuys-Cheng, S.-H. (1998). Distances and limits on Herbrand interpretations. In Proceedings of the Eighth International Conference on Inductive Logic Programming, (pp. 250–260). Berlin: Springer. Vol. 1446 of Lecture Notes in Artificial Intelligence.Google Scholar
  20. Plotkin, G. (1970). A note on inductive generalization. In B. Meltzer& D. Michie (Eds.), Machine intelligence, (Vol. 5). Edinburgh University Press.Google Scholar
  21. Ramon, J.& Bruynooghe, M. (1998). A framework for defining distances between first-order logic objects. In Proceedings of the Eighth International Conference on Inductive Logic Programming, (pp. 271–280). Berlin: Springer. Vol. 1446 of Lecture Notes in Artificial Intelligence.Google Scholar
  22. Salzberg, S. (1991). A nearest hyperrectangle learning method. Machine Learning, 6, 251–276.Google Scholar
  23. Sebag, M. (1997). Distance induction in first order logic. In Proceedings of the Seventh International Workshop on Inductive Logic Programming, (pp. 264–272). Berlin: Springer. Vol. 1297 of Lecture Notes in Artificial Intelligence.Google Scholar
  24. Sebag, M. (1998). A Stochastic Simple Similarity. In Proceedings of the Eighth International Conference on Inductive Logic Programming, (pp. 95–105). Berlin: Springer. Vol. 1446 of Lecture Notes in Artificial Intelligence.Google Scholar
  25. Sebag, M.& Rouveirol, C. (1997). Tractable induction and classification in first order logic via stochastic matching. In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence. (pp. 888–893). San Francisco: Morgan Kaufmann.Google Scholar
  26. Shapiro, B. A.& Zhang, K. (1990). Comparing multiple RNA secondary structures using tree comparisons. Computer Applications in Biosciences, 6(4), 309–318.Google Scholar
  27. Tai, K.-C. (1979). The tree-to-tree correction problem. Journal of the ACM, 26(3), 422–433.Google Scholar
  28. Ukkonen, E. (1985). Algorithms for approximate string matching. Information and Control, 64, 100–118.Google Scholar
  29. Wagner, R. A.& Fischer, M. J. (1974). The string-to-string correction problem. Journal of the ACM, 21(1), 168–173.Google Scholar
  30. Wettschereck, D.& Dietterich, T. G. (1995). An experimental comparison of the nearest-neighbor and nearesthyperrectangle algorithms. Machine Learning, 19(1), 5–27.Google Scholar
  31. Wettschereck, D., Mohri, T.,& Aha, D. W. (1997). A review and comparative evaluation of feature weighting methods for lazy learning algorithms. AI Review Journal, 11, 273–314.Google Scholar
  32. Wrobel, S. (1996). Inductive logic programming. In G. Brewka (Ed.), Advances in knowledge representation and reasoning. Studies in Logic, Language and Information. Stanford, CSLI-Publishers.Google Scholar
  33. Zhang, K.& Shasha, D. (1989). Simple fast algorithms for the editing distance between trees and related problems. SIAM Journal on Computing, 18(6), 1245–1262.Google Scholar
  34. Zuker, M. (1989). On finding all suboptimal foldings of an RNA Molecule, Science 244, 48–52.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Tamás Horváth
    • 1
  • Stefan Wrobel
    • 2
  • Uta Bohnebeck
    • 3
  1. 1.German National Research Center for Information Technology, AiS.KDSchloβ BirlinghovenSankt AugustinGermany
  2. 2.School of Computer Science, IWSOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  3. 3.Center for Computing TechnologiesUniversity of BremenBremenGermany

Personalised recommendations