Pharmaceutical Research

, Volume 17, Issue 12, pp 1489–1493 | Cite as

Dexamethasone Megadoses Stabilize Rat Liver Lysosomal Membranes by Non-Genomic and Genomic Effects

  • Burkhard Hinz
  • Rolf Hirschelmann


Purpose. Membrane-stabilizing effects may be part of glucocorticoid action during high-dose glucocorticoid therapy. The present study investigates the mode of action of dexamethasone megadoses on rat liver lysosomal membranes.

Methods. Following intravenous administration of dexamethasone in rats, the release of β-glucuronidase from liver lysosomes was assessed ex vivo as a marker for lysosomal membrane integrity.

Results. Dexamethasone megadoses significantly inhibited β-glucuronidase release 10 min post-administration by 38% (3 mg/kg dexamethasone) and 33% (10 mg/kg dexamethasone) at corresponding dexamethasone liver concentrations of 3.9 × 10−5 mol/kg and 15.1 × 10−5 mol/kg, respectively. Comparable inhibition of β-glucuronidase release (34% for 3 mg/kg and 38% for 10 mg/kg) was observed 24 h after administration of dexamethasone, although dexamethasone liver concentrations had already declined to 0.09 × 10−5 mol/kg and 0.19 × 10−5 mol/kg, respectively. A 2-h oral pretreatment of rats with the glucocorticoid receptor antagonist RU 486 (10 mg/kg) did not alter immediate (10 min) stabilization by dexamethasone (3 mg/kg), but almost completely prevented lysosomal membrane protection 24 h after dexamethasone injection.

Conclusions. Dexamethasone megadoses may preserve lysosomal membrane integrity by a dual action involving both rapid nongenomic effects occurring instantaneously after administration and long-term receptor-dependent genomic events.

lysosomal membrane stabilization dexamethasone megadoses nongenomic steroid action genomic steroid action 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Hirschelmann and H. Bekemeier. Problems and results in testing the possible mode of antiinflammatory glucocorticoid action in carrageenin rat paw oedema: Advantages of local substance injection. Int. J. Tiss. Reac. 6:471–475 (1984).Google Scholar
  2. 2.
    M. Goppelt-Struebe. Molecular mechanisms involved in the regulation of prostaglandin biosynthesis by glucocorticoids. Biochem. Pharmacol. 15:1389–1395 (1997).Google Scholar
  3. 3.
    H. M. Reichardt, F. Tronche, S. Berger, C. Kellendonk, and G. Schutz. New insights into glucocorticoid and mineralocorticoid signaling: lessons from gene targeting. Adv. Pharmacol 47:1–21 (2000).Google Scholar
  4. 4.
    D. Duval, S. Durant, and F. Homo-Delache. Non-genomic effects of steroids—interactions of steroid molecules with membrane structures and functions. Biochim. Biophys. Acta 737:409–442 (1983).Google Scholar
  5. 5.
    M. Wehling. Specific, nongenomic actions of steroid hormones. Annu. Rev. Physiol. 59:365–393 (1997).Google Scholar
  6. 6.
    F. Buttgereit, M. Wehling, and G. R. Burmester. A new hypothesis of modular glucocorticoid actions: steroid treatment of rheumatic diseases revisited. Arthritis Rheum. 41:761–767 (1998).Google Scholar
  7. 7.
    P. J. Pentikäinen. Pharmacological aspects of corticosteroid pulse therapy. Scand. J. Rheumatol. 54(Suppl):6–9 (1984).Google Scholar
  8. 8.
    P. P. Youssef, D. R. Haynes, S. Triantafillou, A. Parker, J. R. Gamble, P. J. Roberts-Thomson, M. J. Ahern, and M. D. Smith. Effects of pulse methylprednisolone on inflammatory mediators in peripheral blood, synovial fluid, and synovial membrane in rheumatoid arthritis. Arthritis Rheum. 40:1400–1408 (1997).Google Scholar
  9. 9.
    L. Barile and C. Lavalle. Transverse myelitis in systemic lupus erythematosus—the effect of IV pulse methylprednisolone and cyclophosphamide. J. Rheumatol. 19:370–372 (1992).Google Scholar
  10. 10.
    M. J. Reichgott and K. L. Melmon. Should corticosteroids be used in shock? Med. Clin. North Am. 57:1211–1223 (1973).Google Scholar
  11. 11.
    M. B. Bracken, M. J. Shepard, W. F. Collins, Jr., T. R. Holford, D. S. Baskin, H. M. Eisenberg, E. Flamm, L. Leo-Summers, J. C. Maroon, L. F. Marshall et al. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second National Acute Spinal Cord Injury Study. J. Neurosurg. 76:23–31 (1992).Google Scholar
  12. 12.
    E. Tada, K. Matsumoto, K. Kinoshita, T. Furuta, and T. Ohmoto. The protective effect of dexamethasone against radiation damage induced by interstitial irradiation in normal monkey brain. Neurosurgery 41:209–217 (1997).Google Scholar
  13. 13.
    A. G. Droogan, A. D. Crockard, S. A. McMillan, and S. A. Hawkins. Effects of intravenous methylprednisolone therapy on leukocyte and soluble adhesion molecule expression in MS. Neurology 50:224–229 (1998).Google Scholar
  14. 14.
    G. Weissmann and J. T. Dingle. Release of lysosomal protease by ultraviolet irradiation and inhibition by hydrocortisone. Exp. Cell Res. 25:207–210 (1961).Google Scholar
  15. 15.
    E. B. Thompson. Glucocorticoids and lysosomes. In: J. D. Baxter and G. G. Rousseau (eds.) Glucocorticoid hormone action, Springer-Verlag, Berlin, Heidelberg, New York, 1979 pp. 575–581.Google Scholar
  16. 16.
    R. E. Esser, R. A. Angelo, M. D. Murphey, L. M. Watts, L. P. Thornburg, J. T. Palmer, J. W. Talhouk, and R. E. Smith. Cysteine proteinase inhibitors decrease articular cartilage and bone destruction in chronic inflammatory arthritis. Arthritis Rheum. 37:236–247 (1994).Google Scholar
  17. 17.
    L. J. Ignarro. Lysosome membrane stabilization in vivo: effects of steroidal and non-steroidal anti-inflammatory drugs on the integrity of rat liver lysosomes. J. Pharmacol. Exp. Ther. 182:179–188 (1972).Google Scholar
  18. 18.
    C. Alamo, B. Ferrandiz, F. Lopez-Munoz, and L. F. Alguacil. Influence of butibufen on enzyme activity and lysosomal stabilization ex vivo: a comparative study with hydrocortisone and acetylsalicylic acid. Meth. Find. Exp. Clin. Pharmacol. 17:303–310 (1995).Google Scholar
  19. 19.
    W. H. Fishman. β-Glucuronidase. In: H. U. Bergmeyer (ed.) Methoden der enzymatischen Analyse, Bd. I, 4., neubearb. u. erw. Aufl., Verlag Chemie Weinheim 1974 pp. 964–979.Google Scholar
  20. 20.
    I. Moldenhauer, R. Hirschelmann, and M. Kurowski. Pharmacokinetic investigations with dexamethasone megadoses in rats. Pharmazie 46:468 (1991).Google Scholar
  21. 21.
    P. Rohdewald, H. Möllmann, J. Barth, J. Rehder, and H. Derendorf. Pharmacokinetics of dexamethasone and its phosphate ester. Biopharm. Drug Disp. 8:205–212 (1987).Google Scholar
  22. 22.
    R. Hirschelmann and R. Schade. Regulation of acute phase reaction in rat adjuvant arthritis. Agents Actions 19:335–336 (1986).Google Scholar
  23. 23.
    R. Hirschelmann, E. Klingner, K. Schmidt, and H. Bekemeier. Dexamethasone antagonism by RU 38486 in inflammatory reactions of the rat and mouse. Part 1: Degree of inflammation. Pharmazie 43:219–220 (1988).Google Scholar
  24. 24.
    M. Moguilewsky and D. Philibert. Biochemical profile of RU 486. In: E.-E. Beaulieu and S. J. Segal (eds.) The antiprogestin steroid RU 486 and human fertility control, Plenum Press, New York, London, 1985 pp. 87–97.Google Scholar
  25. 25.
    L. J. Libertini, A. S. Waggoner, P. C. Jost, and O. H. Griffith. Orientation of lipid spin labels in lecithin multilayers. Proc. Natl. Acad. Sci. USA 64:13–19 (1969).Google Scholar
  26. 26.
    H. Nagai, T. Takizawa, I. Nakatomi, N. Matsuura, and A. Koda. Anti-allergic action of glucocorticoids in rats. Japan. J. Pharmacol. 33:349–355 (1983).Google Scholar
  27. 27.
    J. W. C. Bird, T. Berg, and J. H. Leathem. Cathepsin activity of liver and muscle fractions of adrenalectomized rats. Proc. Soc. Exp. Biol. Med. 127:182–188 (1968).Google Scholar
  28. 28.
    L. J. Ignarro, N. Krassikoff, and J. Slywka. Release of enzymes from a rat liver lysosome fraction: inhibition by catecholamines and cyclic 3',5'-adenosine monophosphate, stimulation by cholinergic agents and cyclic 3',5'-guanosine monophosphate. J. Pharmacol. Exp. Ther. 186:86–99 (1973).Google Scholar
  29. 29.
    R. J. Smith and L. J. Ignarro. Bioregulation of lysosomal enzyme secretion from human neutrophils: roles of guanosine 3',5'-monophosphate and calcium in stimulus-secretion coupling. Proc. Natl. Acad. Sci. USA 72:108–112 (1975).Google Scholar
  30. 30.
    J. R. Starling, W. W. Ferguson, L. E. Rudolf, and S. L. Wangensteen. Lysosomal enzyme release and vascular resistance changes in the isolated perfused kidney: Influence of methylprednisolone. Surg. Forum 23:259–261 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Burkhard Hinz
    • 1
  • Rolf Hirschelmann
    • 2
  1. 1.Department of Experimental and Clinical Pharmacology and ToxicologyFriedrich Alexander University Erlangen-Nu¨rnbergErlangenGermany
  2. 2.Department of Pharmacology and Toxicology, School of PharmacyMartin Luther University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations