Advertisement

Environmental Biology of Fishes

, Volume 58, Issue 3, pp 289–295 | Cite as

Swimming Performances of Four California Stream Fishes: Temperature Effects

  • Christopher A. Myrick
  • Joseph J. Cech
Article

Abstract

The critical swimming velocity (Ucrit) of four California stream fishes, hardhead, Mylopharodon conocephalus, hitch, Lavinia exilicauda, Sacramento pikeminnow, Ptychocheilus grandis, and Sacramento sucker, Catostomus occidentalis was measured at 10, 15, and 20°C. Hardhead, Sacramento sucker, and Sacramento pikeminnow swimming performances tended to be lowest at 10°C, higher at 15°C, and then decreased or remained constant at 20°C. Hitch swimming performance was lower at 10°C than at 20°C. There were no significant differences among species at 10 or 15°C, although pikeminnow and hitch were ca. 20% slower than hardhead or sucker. At 20°C hardhead, Sacramento sucker, and Sacramento pikeminnow had remarkably similar Ucrit but hitch were significantly (by 11%) faster. We recommend that water diversion approach velocities should not exceed 0.3 ms−1 for hitch (20–30 cm total length) and 0.4 ms−1 for hardhead, Sacramento pikeminnow, and Sacramento sucker (20–30 cm TL).

Cyprinidae Catostomidae hardhead Mylopharodon conocephalus hitch Lavinia exilicauda Sacramento pikeminnow Ptychocheilus grandis Sacramento sucker Catostomus occidentalis critical swimming velocity water diversion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Alsop, D. H. & C. M. Wood. 1997. The interactive effects of feeding and exercise on oxygen consumption, swimming performance and protein usage in juvenile rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 200: 2337–2346.Google Scholar
  2. Bainbridge, R. 1958. The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat. J. Exp. Biol. 35: 109–133.Google Scholar
  3. Beamish, F. W. H. 1978. Swimming capacity. pp. 101–189. In: W. S. Hoar & D. J. Randall (ed.) Fish Physiology, Academic Press, New York.Google Scholar
  4. Brett, J. R. 1964. The respiratory metabolism and swimming performance of young sockeye salmon. J. Fish. Res. Board Can. 21: 1184–1226.Google Scholar
  5. Brown, L. R. & P. B. Moyle. 1991. Changes in habitat and microhabitat partitioning within an assemblage of stream fishes in response to predation by Sacramento squawfish (Ptychocheilus grandis). Can. J. Fish. Aquat. Sci. 48: 849–856.Google Scholar
  6. Brown, L. R. & P. B. Moyle. 1993. Distribution, ecology, and status of the fishes of the San Joaquin river drainage, California. Calif. Fish Game 79: 96–114.Google Scholar
  7. Bushnell, P. G., J. F. Steffensen & K. Johansen. 1984. Oxygen consumption and swimming performance in hypoxia-acclimated rainbow trout Salmo gairdneri. J. Exp. Biol. 113: 225–235.Google Scholar
  8. Carmichael, G. J., J. R. Tomasso, B. A. Simco & K. B. Davis. 1984. Characterization and alleviation of stress associated with hauling largemouth bass. Trans. Amer. Fish. Soc. 113: 778–785.Google Scholar
  9. Cech, J. J., Jr., S. J. Mitchell, D. T. Castleberry & M. McEnroe. 1990. Distribution of California stream fishes: influence of environmental temperature and hypoxia. Env. Biol. Fish. 29: 95–105.Google Scholar
  10. Cherry, D. S., K. L. Dickson & J. Cairns Jr. 1977. Preferred, avoided and lethal temperatures of fish during rising temperature conditions. J. Fish. Res. Board Can. 34: 239–246.Google Scholar
  11. Clay, C. H. 1995. Design of fishways and other fish facilities. Lewis Publishers, Boca Raton. 248 pp.Google Scholar
  12. Cooper, J. J. 1983. Distributional ecology of native and introduced fishes of the Pit River system, northeastern California, with notes on the Modoc sucker. Calif. Fish Game 69: 39–53.Google Scholar
  13. Duthie, G. G. 1987. Observations of poor swimming performance among hatchery-reared rainbow trout, Salmo gairdneri. Env. Biol. Fish. 18: 309–311.Google Scholar
  14. Heath, A. G., J. J. Cech, Jr., L. Brink, P. Moberg & J. G. Zinkl. 1997. Physiological responses of fathead minnow larvae to rice pesticides. Ecotox. Envir. Safety 37: 280–288.Google Scholar
  15. Iwama, G. K. & P. A. Ackerman. 1994. Anaesthetics. pp. 1–15. In: P. W. Hochachka & T. P. Mommsen (ed.) Biochemistry and Molecular Biology of Fishes, 3–Analytical Techniques, Elsevier, Amsterdam.Google Scholar
  16. Jobling, M. 1997. Temperature and growth: modulation of growth rate via temperature change. pp. 225–254. In: C. M. Wood & D. G. McDonald (ed.) Global Warming: Implications for Freshwater and Marine fish, Cambridge University Press, Cambridge.Google Scholar
  17. Johnson, T. P., D. A. Syme, B. C. Jayne, G. V. Lauder & A. F. Bennett. 1994. Modeling red muscle power output during steady and unsteady swimming in largemouth bass. Amer. J. Physiol. 267: R481–R488.Google Scholar
  18. Johnston, I. A. & D. Ball. 1997. Thermal stress and muscle function in fish. pp. 79–104. In: C. M. Wood & D. G. McDonald (ed.) Global Warming: Implications for Freshwater and Marine fish, Cambridge University Press, Cambridge.Google Scholar
  19. Kolok, A. S. 1991. Photoperiod alters the critical swimming speed of juvenile largemouth bass, Micropterus salmoides, acclimated to cold water. Copeia 1991: 1085–1090.Google Scholar
  20. Kolok, A. S. & A. P. Farrell. 1994. Individual variation in the swimming performance and cardiac performance of northern squawfish, Ptychocheilus oregonensis. Physiol. Zool. 67: 706–722.Google Scholar
  21. McEwan, D. & T. A. Jackson. 1996. Steelhead restoration and management plan for California. California Department of Fish and Game, Sacramento. 234 pp.Google Scholar
  22. Moyle, P. B. 1976. Inland fishes of California. University of California Press, Berkeley. 405 pp.Google Scholar
  23. Moyle, P. B. & D. M. Baltz. 1985. Microhabitat use by an assemblage of California stream fishes: developing criteria for instream flow requirements. Trans. Amer. Fish. Soc. 114: 695–704.Google Scholar
  24. Moyle, P. B., B. Vondracek & G. D. Grossman. 1983. Responses of fish populations in the North Fork of the Feather River, California, to treatments with fish toxicants. N. Amer. J. Fish. Manage. 3: 48–60.Google Scholar
  25. Mulchaey, B. W. 1994. An evaluation of the swimming performance of two strains of hatchery-reared rainbow trout (Oncorhynchus mykiss). Masters Thesis, Humboldt State University, Arcata. 36 pp.Google Scholar
  26. Myrick, C. A. 1998. Temperature, genetic, and ration effects on juvenile rainbow trout (Oncorhynchus mykiss) bioenergetics. Ph.D. Dissertation, University of California, Davis. 166 pp.Google Scholar
  27. Peake, S., R. S. McKinley & D. A. Scruton. 1997. Swimming performance of various freshwater Newfoundland salmonids relative to habitat selection and fishway design. J. Fish Biol. 51: 710–723.Google Scholar
  28. Rimmer, D. M., R. L. Saunders & U. Paim. 1985. Effects of temperature and season on the position holding performance of juvenile Atlantic salmon (Salmo salar). Can. J. Zool. 63: 92–96.Google Scholar
  29. Schmidt-Nielsen, K. 1990. Animal physiology: adaptation and environment. University of Cambridge Press, Cambridge. 602 pp.Google Scholar
  30. Swanson, C., P. S. Young & J. J. Cech, Jr. 1998. Swimming performance of delta smelt: maximum performance, and behavioral and kinematic limitations on swimming at submaximal velocities. J. Exp. Biol. 201: 333–345.Google Scholar
  31. Taylor, E. W., S. Egginton, S. E. Taylor & P. J. Butler. 1997. Factors which may limit swimming performance at different temperatures. pp. 105–134. In: C. M. Wood & D. G. McDonald (ed.) Global Warming: Implications for Freshwater and Marine Fish, Cambridge University Press, Cambridge.Google Scholar
  32. Wales, J. H. 1950. Swimming speed of the western sucker, Catostomus occidentalis Ayres. Calif. Fish Game 36: 433–434.Google Scholar
  33. Webb, P. W. 1993. The effect of solid and porous channel walls on steady swimming of steelhead trout Oncorhynchus mykiss. J. Exp. Biol. 178: 97–108.Google Scholar
  34. Webb, P. W., P. T. Kostecki & E. D. Stevens. 1984. The effect of size and swimming speed on locomotor kinematics of rainbow trout. J. Exp. Biol. 109: 77–95.Google Scholar
  35. Yates, G. T. 1983. Hydromechanics of body and caudal fin propulsion. pp. 177–213. In: P. W. Webb & D. Weihs (ed.) Fish Biomechanics, Praeger, New York.Google Scholar
  36. Young, P. S. & J. J. Cech, Jr. 1996. Environmental tolerances and requirements of splittail. Trans. Amer. Fish. Soc. 125: 664–678.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Christopher A. Myrick
    • 1
  • Joseph J. Cech
    • 2
  1. 1.Department of Wildlife, Fish, and Conservation BiologyUniversity of CaliforniaDavisU.S.A.
  2. 2.Department of Wildlife, Fish, and Conservation BiologyUniversity of CaliforniaDavisU.S.A.

Personalised recommendations