Advertisement

Environmental Biology of Fishes

, Volume 60, Issue 1–3, pp 131–156 | Cite as

Advances in the Study of Feeding Behaviors, Mechanisms, and Mechanics of Sharks

  • Philip J. Motta
  • Cheryl D. Wilga
Article

Abstract

Sharks as a group have a long history as highly successful predatory fishes. Although, the number of recent studies on their diet, feeding behavior, feeding mechanism, and mechanics have increased, many areas still require additional investigation. Dietary studies of sharks are generally more abundant than those on feeding activity patterns, and most of the studies are confined to relatively few species, many being carcharhiniform sharks. These studies reveal that sharks are generally asynchronous opportunistic feeders on the most abundant prey item, which are primarily other fishes. Studies of natural feeding behavior are few and many observations of feeding behavior are based on anecdotal reports. To capture their prey sharks either ram, suction, bite, filter, or use a combination of these behaviors. Foraging may be solitary or aggregate, and while cooperative foraging has been hypothesized it has not been conclusively demonstrated. Studies on the anatomy of the feeding mechanism are abundant and thorough, and far exceed the number of functional studies. Many of these studies have investigated the functional role of morphological features such as the protrusible upper jaw, but only recently have we begun to interpret the mechanics of the feeding apparatus and how it affects feeding behavior. Teeth are represented in the fossil record and are readily available in extant sharks. Therefore much is known about their morphology but again functional studies are primarily theoretical and await experimental analysis. Recent mechanistic approaches to the study of prey capture have revealed that kinematic and motor patterns are conserved in many species and that the ability to modulate feeding behavior varies greatly among taxa. In addition, the relationship of jaw suspension to feeding behavior is not as clear as was once believed, and contrary to previous interpretations upper jaw protrusibility appears to be related to the morphology of the upper jaw-chondrocranial articulation rather than the type of jaw suspension. Finally, we propose a set of specific hypotheses including: (1) The functional specialization for suction feeding hypothesis that morphological and functional specialization for suction feeding has repeatedly arisen in numerous elasmobranch lineages, (2) The aquatic suction feeding functional convergence hypothesis that similar hydrodynamic constraints in bony fishes and sharks result in convergent morphological and functional specializations for suction feeding in both groups, (3) The feeding modulation hypothesis that suction capture events in sharks are more stereotyped and therefore less modulated compared to ram and bite capture events, and (4) The independence of jaw suspension and feeding behavior hypothesis whereby the traditional categorization of jaw suspension types in sharks is not a good predictor of jaw mobility and prey capture behavior. Together with a set of questions these hypotheses help to guide future research on the feeding biology of sharks.

evolution diet prey capture jaws muscles teeth modulation protrusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abler, W.L. 1992. The serrated teeth of tyrannosaurid dinosaurs, and biting structures in other animals. Paleobiology 18: 161–183.Google Scholar
  2. Alexander, R.McN. 1967. Functional design in fishes. Hutchinson University Library, London. 160 pp.Google Scholar
  3. Allis, E.P. Jr. 1923. The cranial anatomy of Chlamydoselachus anguineus. Acta. Zool. 4: 123–221.Google Scholar
  4. Applegate, S.P. 1965. Tooth terminology and variation in sharks with special reference to the sand shark, Carcharias taurus Rafinesque. Los Angeles County Museum Contributions in Science 86: 1–18.Google Scholar
  5. Beebe, W. 1941. External characters of six embryo nurse sharks, Ginglymostoma cirratum (Gmelin). Zoologica 26: 9–12.Google Scholar
  6. Bleckmann, H. & M.H. Hofmann. 1999. Special senses. pp. 300–328. In: W.C. Hamlett (ed.) Sharks, Skates, and Rays, The Biology of Elasmobranch Fishes, The Johns Hopkins University Press, Baltimore.Google Scholar
  7. Bigelow, H.B. & W.C. Schroeder. 1948. Sharks. pp. 59–546. In: J. Tee-Van (ed.) Fishes of theWestern North Atlantic, Memoir Sears Foundation for Marine Research, New Haven.Google Scholar
  8. Budker, P. 1971. The life of sharks. Columbia University Press, New York. 222 pp.Google Scholar
  9. Bullis, H.R. 1961. Observations on the feeding behavior of whitetip sharks on schooling fishes. Ecology 42: 194–195.Google Scholar
  10. Carroll, R.L. 1988. Vertebrate paleontology and evolution. W.H. Freeman and Company, New York. 698 pp.Google Scholar
  11. Castro, J.I. 1996. The sharks of North American waters. Texas A & M University Press, College Station. 180 pp.Google Scholar
  12. Chu, C.T. 1989. Functional design and prey capture dynamics in an ecologically generalized surfperch (Embiotocidae). J. Zool., Lond. 217: 417–440.Google Scholar
  13. Clark, E. & D.R. Nelson. 1997. Young whale sharks, Rhincodon typus, feeding on a copepod bloom near La Paz, Mexico. Env. Biol. Fish. 50: 63–73.Google Scholar
  14. Coles, R.J. 1915. Notes on the sharks and rays of Cape Lookout, N.C. Proc. Biol. Soc. Washington 28: 89–94.Google Scholar
  15. Coles, R.J. 1919. The large sharks of cape lookout, North Carolina. The white shark or maneater, tiger shark and hammerhead. Copeia 1919: 34–43.Google Scholar
  16. Colman, J.G. 1997. A review of the biology and ecology of the whale shark. J. Fish Biol. 51: 1219–1234.Google Scholar
  17. Compagno, L.J.V. 1970. Systematics of the genus Hemitriakis (Selachii: Carcharhinidae), and related genera. Proc. Calif. Acad. Sci. ser. 4, 38: 63–98.Google Scholar
  18. Compagno, L.J.V. 1973. Interrelationships of living elasmobranchs. pp. 15–61. In: P.H. Greenwood, R.S. Miles & C. Patterson (ed.) Interrelationships of Fishes, Zool. J. Linn. Soc. Supplement 1(53).Google Scholar
  19. Compagno, L.J.V. 1977. Phyletic relationships of living sharks and rays. Amer. Zool. 17: 303–322.Google Scholar
  20. Compagno, L.J.V. 1984. FAO species catalogue, Vol. 4. Sharks of the World. FAO Fisheries Synopsis No. 125, 4: 1–655.Google Scholar
  21. Compagno, L.J.V. 1988. Sharks of the order Carcharhiniformes. Princeton University Press, Princeton. 486 pp.Google Scholar
  22. Cortes, E. 2000. Standardized diet compositions and trophic levels of sharks. ICES J. Mar. Sci. (in press).Google Scholar
  23. Cortes, E. & S.H. Gruber. 1990. Diet, feeding habits and estimates of daily ration of young lemon sharks, Negaprion brevirostris (Poey). Copeia 1990: 204–218.Google Scholar
  24. Cortes, E., C.A. Manire & R.E. Hueter. 1996. Diet, feeding habits, and diel feeding chronology of the bonnethead shark, Sphyrna tiburo, in southwest Florida. Bull. Mar. Sci. 58: 353–367.Google Scholar
  25. Daniel, J.F. 1915. The anatomy of Heterodontus francisci II: the endoskeleton. J. Morphol. 26: 447–493.Google Scholar
  26. Daniel, J.F. 1934. The elasmobranch fishes. University of California Press, Berkeley. 332 pp.Google Scholar
  27. Diamond, J.M. 1985. Filter-feeding on a grand scale. Nature 316: 679–680.Google Scholar
  28. Ebert, D.A. 1991. Observations on the predatory behaviour of the sevengill shark Notorynchus cepedianus. S. Afr. J. Mar. Sci. 11: 455–465.Google Scholar
  29. Edgeworth, F.H. 1935. Cranial muscles of vertebrates. Cambridge University Press, Cambridge. 493 pp.Google Scholar
  30. Eibl-Eibesfeldt, I. & H. Hass. 1959. Erfahrungen mit Haien. Zeit. Tierpsychol. 16: 733–746.Google Scholar
  31. Ellis, J.R. & S.E. Shackley. 1995. Ontogenetic changes and sexual dimorphism in the head, mouth and teeth of the lesser spotted dogfish. J. Fish Biol. 47: 155–164.Google Scholar
  32. Evans, W.E. & P.W. Gilbert. 1971. The force of bites by the silky shark (Carcharhinus falciformis) measured under field conditions. Naval Undersea Research and Development Center, San Diego. 8 pp.Google Scholar
  33. Ferry-Graham, L.A. 1997a. Feeding kinematics of juvenile swellsharks, Cephaloscyllium ventriosum. J. Exp. Biol. 200: 1255–1269.Google Scholar
  34. Ferry-Graham, L.A. 1997b. Effects of prey size and elusivity on prey capture kinematics in leopard sharks, Triakis semifasciata. Amer. Zool. 37: 82A.Google Scholar
  35. Ferry-Graham, L.A. 1998a. Feeding kinematics of hatchling swellsharks, Cephaloscyllium ventriosum (Scyliorhinidae): the importance of predator size. Mar. Biol. 131: 703–718.Google Scholar
  36. Ferry-Graham, L.A. 1998b. Effects of prey size and mobility of prey-capture kinematics in leopard sharks, Triakis semifasciata. J. Exp. Biol. 201: 2433–2444.Google Scholar
  37. Finstad, W.O. & D.R. Nelson. 1975. Circadian activity rhythm in the horn shark, Heterodontus francisci: effect of light intensity. Bull. S. Calif. Acad. Sci. 74: 20–26.Google Scholar
  38. Fouts, W.R. 1995. The feeding behavior and associated ambushsite characteristics of the Pacific angel shark, Squatina californica, at Santa Catalina Island, California. M.S. Thesis, California State University, Long Beach. 147 pp.Google Scholar
  39. Fouts, W.R. & D.R. Nelson. 1999. Prey capture by the Pacific angel shark, Squatina californica: visually mediated strikes and ambush-site characteristics. Copeia 1999: 304–312.Google Scholar
  40. Frazzetta, T.H. 1988. The mechanics of cutting and the form of shark teeth (Chondrichthyes, Elasmobranchii). Zoomorphology 108: 93–107.Google Scholar
  41. Frazzetta, T.H. 1994. Feeding mechanisms in sharks and other elasmobranchs. Adv. Comp. Environ. Physiol. 18: 31–57.Google Scholar
  42. Frazzetta, T.H. & C.D. Prange. 1987. Movements of cephalic components during feeding in some requiem sharks (Carcharhiniformes: Carcharhinidae). Copeia 1987: 979–993.Google Scholar
  43. Gadow, H. 1888. On the modifications of the first and second visceral arches, with special reference to the homologies of the auditory ossicles. Philos. Trans. Royal Soc. Lond. 179B: 451–485.Google Scholar
  44. Gilbert, P.W. 1962. The behavior of sharks. Sci. Amer. 207: 60–68.Google Scholar
  45. Gohar, H.A.F. & F.M. Mazhar. 1964. The internal anatomy of Selachii from the North Western Red Sea. Publ. Mar. Biol. Stat. Al-Ghardaqa, Egypt 13: 145–240.Google Scholar
  46. Goodey, T. 1910. A contribution to the skeletal anatomy of the frilled shark, Chlamydoselachus anguineus (Gar.) Proc. Zool. Soc. London 2: 540–571.Google Scholar
  47. Gregory, W.K. 1904. The relations of the visceral arches to the chondrocranium. Biol. Bull. 7: 55–69.Google Scholar
  48. Grogan E.D., R. Lund & D. Didier. 1999. Description of the chimaerid jaw and its phylogenetic origins. J. Morphol. 239: 45–59.Google Scholar
  49. Gudger, E.W. 1907. A note on the hammerhead shark (Sphyrna zygaena) and its food. Science 25: 1005.Google Scholar
  50. Gudger, E.W. 1941a. The feeding organs of the whale shark, Rhineodon typus. J. Morphol. 68: 81–99.Google Scholar
  51. Gudger, E.W. 1941b. The food and feeding habits of the whale shark, Rhineodon typus. Journal of the Elisha Mitchell Scientific Society 57: 57–72.Google Scholar
  52. Haller, G. 1926. Über die Entwicklung, den Bau und die Mechanik des Kieferapparates des Dornhais (Acanthias vulgaris). Zeitschr. Mikrosk. Anat. Forsch. 5: 749–793.Google Scholar
  53. Heupel, M.R. & M.B. Bennett. 1998. Observations of the diet and feeding habits of the epaulette shark, Hemiscyllium ocellatum (Bonnaterre), on Heron Island Reef, Great Barrier Reef, Australia. Mar. Freshwater Res. 49: 753–756.Google Scholar
  54. Hobson, E.S. 1963. Feeding behavior in three species of sharks. Pac. Sci. 17: 171–194.Google Scholar
  55. Hodgson, E.S. & R.F. Mathewson. (ed.) 1978. Sensory biology of sharks, skates, and rays. Office of Naval Research, Arlington. 666 pp.Google Scholar
  56. Holmgren, N. 1940. Studies on the head of fishes. Embryological, morphological, and phylogenetical researches part I. Development of the skull in sharks and rays. Acta. Zool. 21: 51–267.Google Scholar
  57. Holmgren, N. 1942. Studies on the head of fishes. An embryological, morphological, and phylogenetical study part III. The phylogeny of elasmobranch fishes. Acta. Zool. 23: 129–261.Google Scholar
  58. Hueter, R.E. & P.W. Gilbert. 1990. The sensory world of sharks. pp. 48–55. In: S.H. Gruber (ed.) Discovering Sharks, American Littoral Society, Highlands.Google Scholar
  59. Huxley, T. H. 1876. On Ceratodus fosteri, observation on the classification of fishes. Proc. Zool. Soc. London 1876: 24-59.Google Scholar
  60. James, W.W. 1953. The succession of teeth in elasmobranchs. Proc. Zool. Soc. Lond. 123: 419–475.Google Scholar
  61. Jones, E.C. 1971. Isistius brasiliensis, a squaloid shark, the probable cause of crater wounds on fishes and cetaceans. U.S. Fish. Bull., 69: 791–798.Google Scholar
  62. Kajiura, S.M. & T.C. Tricas. 1996. Seasonal dynamics of dental sexual dimorphism in the Atlantic stingray, Dasyatis sabina. J. Exp. Biol. 199: 2297–2306.Google Scholar
  63. Klimley, A.P. 1987. The determinants of sexual segregation in the scalloped hammerhead shark, Sphyrna lewini. Env. Biol. Fish. 18: 27–40.Google Scholar
  64. Klimley, A.P. 1994. The predatory behavior of the white shark. Amer. Sci. 82: 122–133.Google Scholar
  65. Klimley, A.P. 1995. Hammerhead city. Nat. Hist. 104: 32–39.Google Scholar
  66. Klimley, A.P. & S.D. Anderson. 1996. Residency patterns of white sharks at the South Farallon Islands, California. pp. 365–373. In: A.P. Klimley & D.G. Ainley (ed.) Great White Sharks, The Biology of Carcharodon carcharias, Academic Press, New York.Google Scholar
  67. Klimley, A.P., S.B. Butler, D.R. Nelson & A.T. Stull. 1988. Diel movements of scalloped hammerhead sharks, Sphyrna lewini Griffith and Smith, to and from a seamount in the Gulf of California. J. Fish Biol. 33: 751–761.Google Scholar
  68. Klimley, A.P. & D.R. Nelson. 1981. Schooling of the scalloped hammerhead shark, Sphyrna lewini, in the Gulf of California. U.S. Fish. Bull. 79: 356–360.Google Scholar
  69. Klimley, A.P. & D.R. Nelson. 1984. Diel movement patterns of the scalloped hammerhead (Sphyrna lewini) in relation to El Bajo Espiritu Santo: a refuging central-position social system. Behav. Ecol. Sociobiol. 15: 45–54.Google Scholar
  70. Klimley, A.P., P. Pyle & S.D. Anderson. 1996. The behavior of white sharks and their pinniped prey during predatory attacks. pp. 175–191. In: A.P. Klimley & D.G. Ainley (ed.) Great White Sharks, The Biology of Carcharodon carcharias, Academic Press, New York.Google Scholar
  71. Lauder, G.V. 1980. Evolution of the feeding mechanism in primitive actinopterygian fishes: a functional anatomical analysis of Polypterus, Lepisosteus, and Amia. J. Morphol. 163: 283–317.Google Scholar
  72. Lauder, G.V. 1985. Aquatic feeding in lower vertebrates. pp. 210- 229. In: M. Hildebrand, D.M. Bramble, K.F. Liem & D.B. Wake (ed.) Functional Vertebrate Morphology, Belknap Press, Cambridge.Google Scholar
  73. LeBoeuf, B.J., J.E. McCosker & J. Hewitt. 1987. Crater wounds on northern elephant seals: the cookiecutter shark strikes again. U.S. Fish. Bull. 85: 387–392.Google Scholar
  74. Liem, K.F. 1978. Modulatory multiplicity in the functional repertoire of the feeding mechanism in cichlids. I. Piscivores. J. Morphol. 158: 323–360.Google Scholar
  75. Liem, K.F. 1993. Ecomorphology of the teleostean skull. pp. 422–452. In: J. Hanken & B.K. Hall (ed.) The Skull, Functional and Evolutionary Mechanisms, Vol. 3, University of Chicago Press, Chicago.Google Scholar
  76. Lightoller, G.H.S. 1939. Probable homologues. A study of the comparative anatomy of the mandibular and hyoid arches and their musculature. Part I: Comparative Morphology. Trans. Zool. Soc. Lond. 24: 349–444.Google Scholar
  77. Long, J.A. 1995. The rise of fishes. Johns Hopkins University Press, Baltimore. 220 pp.Google Scholar
  78. Lowe, C.G., B.M. Wetherbee, G.L. Crow & A.L. Tester. 1996. Ontogenetic dietary shifts and feeding behavior of the tiger shark, Galeocerdo cuvier, in Hawaiian waters. Env. Biol. Fish. 47: 203–211.Google Scholar
  79. Luer, C.A., P.C. Blum & P.W. Gilbert. 1990. Rate of tooth replacement in the nurse shark, Ginglymostoma cirratum. Copeia 1990: 182–191.Google Scholar
  80. Lund, R. & E.D. Grogan. 1997. Relationships of the Chimaeriformes and the basal radiation of the Chondrichthyes. Rev. Fish Biol. Fisheries 7: 65–123.Google Scholar
  81. Luther, A. 1909. Untersuchungen über die vom n. trigeminus innervierte Muskulatur der Selachier (Haie und Rochen) unter Berucksichtigung ihrer Beziehungen zu benachbarten Organen. Acta. Soc. Sci. Fenn. 36: 1–176.Google Scholar
  82. Maisey, J.G. 1980. An evaluation of jaw suspension in sharks. Amer. Mus. Novit. 2706: 1–17.Google Scholar
  83. Marinelli, W. & A. Strenger. 1959. Vergleichende Anatomie und Morphologie der Wirbeltiere. III. Lieferung (Squalus acanthias). Franz Deuticke, Vienna. 305 pp.Google Scholar
  84. Marra, L.J. 1989. Sharkbite on the SL submarine lightwave cable system: history, causes, and resolution. J. Ocean Engineer 14: 230–237.Google Scholar
  85. Martin, A.P. & G.J.P. Naylor. 1997. Independent origins of filter-feeding in megamouth and basking sharks (order Lamniformes) inferred from phylogenetic analysis of cytochrome b gene sequences. pp. 39–50. In: K. Yano, J.F. Morrissey, Y. Yabumoto & K. Nakaya (ed.) Biology of Megamouth Shark, Tokai University Press, Tokyo.Google Scholar
  86. McCosker, J.E. 1985. White shark attack behavior: observations of and speculations about predator and prey strategies. Mem. South. Calif. Acad. Sci. 9: 123–135.Google Scholar
  87. McLaughlin, R.H. & A.K. O'Grower. 1971. Life history and underwater studies of a heterodont shark. Ecol. Monog. 41: 271–289.Google Scholar
  88. Medved, R.J., C.E. Stillwell & J.G. Casey. 1988. The rate of food consumption of young sandbar sharks (Carcharhinus plumbeus) in Chincoteague Bay, Virginia. Copeia 1988: 956–963.Google Scholar
  89. Monastersky, R. 1996. The first shark: to bite or not to bite? Science News 149: 101.Google Scholar
  90. Morrissey, J.F. 1991. Home range of juvenile lemon sharks. pp. 85–86. In: S.H. Gruber (ed.) Discovering Sharks, American Littoral Society, Highlands.Google Scholar
  91. Moss, S.A. 1965. The feeding mechanisms of three sharks: Galeocerdo cuvieri (Peron & Le Sueur), Negaprion brevirostris (Poey), and Ginglymostoma cirratum (Bonnaterre). Doctoral Dissertation, Cornell University, Ithaca. 139 pp.Google Scholar
  92. Moss, S.A. 1967. Tooth replacement in the lemon shark, Negaprion brevirostris. pp. 319–329. In: P.W. Gilbert, R.F. Mathewson & D.P. Rall (ed.) Sharks, Skates, and Rays, John Hopkins Press, Baltimore.Google Scholar
  93. Moss, S.A. 1972. The feeding mechanisms of sharks on the family Carcharhinidae. J. Zool. Lond. 167: 423–436.Google Scholar
  94. Moss, S.A. 1977. Feeding mechanisms in sharks. Amer. Zool. 17: 355–364.Google Scholar
  95. Motta, P.J. 1977. Anatomy and functional morphology of dermal collagen fibers in sharks. Copeia 1977: 454–464.Google Scholar
  96. Motta, P.J., R.E. Hueter & T.C. Tricas. 1991. An electromyographic analysis of the biting mechanisms of the lemon shark, Negaprion brevirostris: functional and evolutionary implications. J. Morphol. 210: 55–69.Google Scholar
  97. Motta, P.J., T.C. Tricas, R.E. Hueter & A.P. Summers. 1997. Feeding mechanism and functional morphology of the jaws of the lemon shark, Negaprion brevirostris (Chondrichthyes, Carcharhinidae). J. Exp. Biol. 200: 2765–2780.Google Scholar
  98. Motta, P.J. & C.D. Wilga. 1995. Anatomy of the feeding apparatus of the lemon shark, Negaprion brevirostris. J. Morphol. 226: 309–329.Google Scholar
  99. Motta, P.J. & C.D. Wilga. 1999. Anatomy of the feeding apparatus of the nurse shark, Ginglymostoma cirratum. J. Morphol. 241: 33–60.Google Scholar
  100. Moy-Thomas, J.A. & R.S. Miles. 1971. Paleozoic fishes. Chapman and Hall, London. 259 pp.Google Scholar
  101. Muller, M., J. Osse & J.H.G. Verhagen. 1982. A quantitative hydrodynamic model of suction feeding in fish. J. Theor. Biol. 95: 49–79.Google Scholar
  102. Myrberg, Jr., A.A. 1991. Distinctive markings of sharks: ethological considerations of visual function. J. Exp. Zool. (Suppl.) 5: 156–166.Google Scholar
  103. Nakaya, K. 1975. Taxonomy, comparative anatomy and phylogeny of Japanese catsharks, Scyliorhinidae. Mem. Fac. Fish. Hokkaido Univ. 23: 1–94.Google Scholar
  104. Nelson, D.R. 1969. The silent savages. Oceans 1: 8–22.Google Scholar
  105. Nelson, D.R. & R.H. Johnson. 1970. Diel activity rhythms in the nocturnal, bottom-dwelling sharks, Heterodontus francisci and Cephaloscyllium ventriosum. Copeia 1970: 732–739.Google Scholar
  106. Nemeth, D.H. 1997. Modulation of attack behavior and its effect on feeding performance in a trophic generalist fish, Hexagrammos decagrammos. J. Exp. Biol. 200: 2155–2164.Google Scholar
  107. Nobiling, G. 1977. Die Biomechanik des Kiefferapparates beim Stierkopfhai (Heterodontus portusjacksoni D Heterodontus philippi). Adv. Anat., Embr. & Cell Biol. 52: 1–52.Google Scholar
  108. Norton, S.F. 1991. Capture success and diet of cottid fishes: the role of predator morphology and attack kinematics. Ecology 72: 1807–1819.Google Scholar
  109. Norton, S.F. 1995. A functional approach to ecomorphological patterns of feeding in cottid fishes. Env. Biol. Fish. 44: 61–78.Google Scholar
  110. Norton, S.F. & E.L. Brainerd. 1993. Convergence in the feeding mechanics of ecomorphologically similar species in the Centrarchidae and Cichlidae. J. Exp. Biol. 176: 11–29.Google Scholar
  111. Parker, H.W. & M. Boeseman. 1954. The basking shark (Cetorhinus maximus) in winter. Proc. Zool. Soc. Lond. 124: 185–194.Google Scholar
  112. Peyer, B. 1968. Comparative odontology. University of Chicago Press, Chicago. 347 pp.Google Scholar
  113. Powlik, J.J. 1995. On the geometry and mechanics of tooth position in the white shark, Carcharodon carcharias. J. Morphol. 226: 277–288.Google Scholar
  114. Pratt, Jr., H.L. 1979. Reproduction in the blue shark, Prionace glauca. U.S. Fish. Bull. 77: 445–470.Google Scholar
  115. Pratt, Jr., H.L., J.G. Casey & R.B. Conklin. 1982. Observations on large white sharks, Carcharodon carcharias, of Long Island, New York. U.S. Fish. Bull. 80: 153–156.Google Scholar
  116. Pretlow-Edmonds, M.A. 1999. Prey capture kinematics of the horn shark, Heterodontus francisci. M.S. Thesis, University of South Florida, Tampa. 64 pp.Google Scholar
  117. Pyle, P., A.P. Klimley, S.D. Anderson & R.P. Henderson. 1996. Environmental factors affecting the occurrence and behavior of white sharks at the Farallon Islands, California. pp. 281–291. In: A.P. Klimley & D.G. Ainley (ed.) Great White Sharks, The Biology of Carcharodon carcharias, Academic Press, New York.Google Scholar
  118. Randall, J.E. 1977. Contribution to the biology of the whitetip reef shark (Triaenodon obesus). Pac. Sci. 31: 143–164.Google Scholar
  119. Raschi, W., J.A. Musick & L.J.V. Compagno. 1982. Hypoprion bigelowi, a synonym of Carcharhinus signatus (Pisces: Carcharhinidae), with a description of ontogenetic heterodonty in this species and notes on its natural history. Copeia 1982: 102–109.Google Scholar
  120. Reif, W. 1976. Morphogenesis, pattern formation and function of the dentition of Heterodontus (Selachii). Zoomorphologie 83: 1–47.Google Scholar
  121. Reif, W.-E., D. McGill & P. Motta. 1978. Tooth replacement rates of the sharks Triakis semifasciata and Ginglymostoma cirratum. Zoll. Jb. Anat. Bd. 99: 151–156.Google Scholar
  122. Robinson, M.P. 1999. Patterns of growth and the effects of scale on the feeding kinematics of the nurse shark, Ginglymostoma cirratum. M.S. Thesis, University of South Florida, Tampa. 78 pp.Google Scholar
  123. Sanderson, S.L. 1988. Variation in neuromuscular activity during prey capture by trophic specialists and generalists (Pisces: Labridae). Brain Behav. Evol. 32: 257–268.Google Scholar
  124. Sanderson, S.L. & R. Wassersug. 1993. Convergent and alternative designs for vertebrate suspension feeding. pp. 37–112. In: J. Hanken & B.K. Hall (ed.) The Skull, Volume 3, University of Chicago Press, Chicago.Google Scholar
  125. Sansom, I.J., M.M. Smith & M.P. Smith. 1996. Scales of thelodont and shark-like fishes from the Ordovician of Colorado. Nature 379: 628–630.Google Scholar
  126. Schaeffer, B. 1967. Comments on elasmobranch evolution. pp. 3–35 In: P.W. Gilbert, R.F. Mathewson & D.P. Rall (ed.) Sharks, Skates and Rays, Johns Hopkins Press, Baltimore.Google Scholar
  127. Schaeffer, B. & M. Williams. 1977. Relationship of fossil and living elasmobranchs. Amer. Zool. 17: 293–302.Google Scholar
  128. Shirai, S. 1996. Phylogenetic interrelationships of neoselachians (Chondrichthyes: Euselachii). pp. 9–34. In: M.L.J. Stiassny, L.R. Parenti & G.D. Johnson (ed.) Interrelationships of Fishes, Academic Press, San Diego.Google Scholar
  129. Shirai, S. & K. Nakaya. 1992. Functional morphology of feeding apparatus of the cookie-cutter shark, Isistius brasiliensis (Elasmobranchii, Dalatiinae). Zool. Sci. 9: 811–821.Google Scholar
  130. Shirai, S. & O. Okamura. 1992. Anatomy of Trigonognathus kabeyai, with comments on feeding mechanism and phylogenetic relationships (Elasmobranchii, Squalidae). Japan. J. Ichthyol. 39: 139–150.Google Scholar
  131. Simfendorfer, C.A. 1992. Biology of tiger sharks (Galeocerdo cuvier) caught by the Queensland shark meshing program off Townsville, Australia. Aust. J. Mar. Freshwater Res. 43: 33–43.Google Scholar
  132. Simpfendorfer, C.A. 1998. Diet of the Australian sharpnose shark, Rhizoprionodon taylori, from northern Queensland. Mar. Freshwater Res. 49: 757–761.Google Scholar
  133. Sims, D.W., A.M. Fox & D.A. Merrett. 1997. Basking shark occurrence off south-west England in relation to zooplankton abundance. J. Fish Biol. 51: 436–440.Google Scholar
  134. Sims, D.W. & D.A. Merrett. 1997. Determination of zooplankton characteristics in the presence of surface feeding basking sharks, Cetorhinus maximus. Mar. Ecol. Prog. Ser. 158: 297–302.Google Scholar
  135. Smith, H.M. 1942. The heterodontid sharks: their natural history and the external development of Heterodontis (Cestracion) japonicus based on notes and drawings by Bashford Dean. pp. 651–770. In: The Bashford Dean memorial volume-Archaic fishes, Art. 8, American Museum of Natural History, New York.Google Scholar
  136. Snodgrass, J.M. & P.W. Gilbert. 1967. A shark-bite meter. pp. 331–337. In: P.W. Gilbert, R.F. Mathewson & D.P. Rall (ed.) Sharks, Skates, and Rays, Johns Hopkins Press, Baltimore.Google Scholar
  137. Springer, S. 1957. Some observations of the behavior of schools of fishes in the Gulf of Mexico and adjacent waters. Ecology 38: 166–171.Google Scholar
  138. Springer, S. 1961. Dynamics of the feeding mechanism of large galeoid sharks. Amer. Zool. 1: 183–185.Google Scholar
  139. Springer, S. 1967. Social organization of shark populations. pp. 149–174. In: P.W. Gilbert, R.F. Mathewson & D.P. Rall (ed.) Sharks, Skates, and Rays, Johns Hopkins Press, Baltimore.Google Scholar
  140. Strasburg, D.W. 1958. Distribution, abundance, and habits of pelagic sharks in the central Pacific Ocean. Fish. Bull. U.S. Fish Wildlife Serv. 58: 335–361.Google Scholar
  141. Strasburg, D.W. 1963. The diet and dentition of Isistius brasiliensis, with remarks on tooth replacement in other sharks. Copeia 1963: 33–40.Google Scholar
  142. Strong, W.R. Jr. 1989. Behavioral ecology of horn sharks, Heterodontus francisci, at Santa Catalina Island, California, with emphasis on patterns of space utilization. M.S. Thesis, California State University, Long Beach. 252 pp.Google Scholar
  143. Strong, W.R. Jr. 1990. Hammerhead shark predation on stingrays: an observation of prey handling by Sphyrna mokarran. Copeia 1990: 836–840.Google Scholar
  144. Talent, L.G. 1976. Food habits of the leopard shark, Triakis semifasciata, in Elkhorn Slough, Monterey Bay, California. Calif. Fish Game 62: 286–298.Google Scholar
  145. Tanaka, S.K. 1973. Suction feeding by the nurse shark. Copeia 1973: 606–608.Google Scholar
  146. Taylor, L.R. Jr. 1972. A revision of the shark family Heterodontidae (Heterodontiformes, Selachii). Doctoral Dissertation, University of California, San Diego. 176 pp.Google Scholar
  147. Taylor, L.R., L.J.V. Compagno & P.J. Struhsaker. 1983. Megamouth - a new species, genus, and family of lamnoid shark (Megachasma pelagios, family Megachasmidae) from the Hawaiian Islands. Proc. Calif. Acad. Sci. 43: 87–110.Google Scholar
  148. Tricas, T.C. 1979. Relationships of the blue shark, Prionace glauca and its prey species near Santa Catalina Island, California. U.S. Fish. Bull. 77: 175–182.Google Scholar
  149. Tricas, T.C. 1982. Bioelectric-mediated predation by swell sharks, Cephaloscyllium ventriosum. Copeia 1982: 948–952.Google Scholar
  150. Tricas, T.C. 1985. Feeding ethology of the white shark, Carcharodon carcharias. Mem. South. Calif. Acad. Sci. 9: 81–91.Google Scholar
  151. Tricas, T.C. & J.E. McCosker. 1984. Predatory behavior of the white shark (Carcharodon carcharias), with notes on its biology. Proc. Calif. Acad. Sci. 43: 221–238.Google Scholar
  152. Tricas, T.C., L.R. Taylor & G. Naftel. 1981. Diel activity of the tiger shark, Galeocerdo cuvier, at French Frigate Shoals. Copeia 1981: 904–908.Google Scholar
  153. Van Damme, J. & P. Aerts. 1997. Kinematics and functional morphology of aquatic feeding in Australian side necked turtles (Pleurodira: Chelodina). J. Morphol. 233: 113–125.Google Scholar
  154. Vorenberg, M.M. 1962. Cannibalistic tendencies of lemon and bull sharks. Copeia 1962: 455–456.Google Scholar
  155. Wainwright, P.C. & B.A. Richard. 1995. Scaling the feeding mechanism of the largemouth bass (Micropterus salmoides): motor pattern. J. Exp. Biol. 198: 1161–1171.Google Scholar
  156. Wainwright, S.A., F. Vosburgh & J.H. Hebrank. 1978. Shark skin: function in locomotion. Science 202: 747–749.Google Scholar
  157. Waller, G.N.H. & A. Baranes. 1991. Chondrocranium morphology of northern Red Sea triakid sharks and relationships to feeding habits. J. Fish Biol. 38: 715–730.Google Scholar
  158. Wetherbee, B.M., G.L. Crow & C.G. Lowe. 1997. Distribution, reproduction and diet of the gray reef shark, Carcharhinus amblyrhynchos, in Hawaii. Mar. Ecol. Prog. Ser. 151: 181–189.Google Scholar
  159. Widder, E.A. 1998. A predatory use of counterillumination by the squaloid shark, Isistius brasiliensis. Env. Biol. Fish. 53: 267–273.Google Scholar
  160. Wilga, C.D. 1997. Evolution of feeding mechanisms in elasmobranchs: a functional morphological approach. Doctoral Dissertation, University of South Florida, Tampa. 195 pp.Google Scholar
  161. Wilga, C.D. & P.J. Motta. 1998a. Conservation and variation in the feeding mechanism of the spiny dogfish, Squalus acanthias. J. Exp. Biol. 201: 1345–1358.Google Scholar
  162. Wilga, C.D. & P.J. Motta. 1998b. Feeding mechanism of the Atlantic guitarfish, Rhinobatos lentiginosus: modulation of kinematic and motor activity. J. Exp. Biol. 201: 3167–3184.Google Scholar
  163. Wilga, C.D. & P.J. Motta. 2000. Kinematics and motor pattern of prey crushing in the bonnethead shark, Sphyrna tiburo. J. Exp. Zoology (in press).Google Scholar
  164. Wilga, C.D., P.C. Wainwright & P.J. Motta. 2000. Evolution of jaw mechanics in vertebrates: insights from Chondrichthyes. Biol. J. Linn. Soc. (in press).Google Scholar
  165. Witzell, W.N. 1987. Selective predation on large cheloniid sea turtles by tiger sharks (Galeocerdo cuvier). Japan. J. Herp. 12: 22–29.Google Scholar
  166. Wu, E.H. 1994. A kinematic analysis of jaw protrusion in orectolobiform sharks: a new mechanism for jaw protrusion in Elasmobranchs. J. Morphol. 222: 175–190.Google Scholar
  167. Zangerl, R. & M.E. Williams 1975. New evidence on the nature of the jaw suspension in paleozoic anacanthous sharks. Paleontology 18: 333–341.Google Scholar
  168. Zlabek, K. 1931. Sur la constitution et le mecanisme de l'appereil maxillaire de la roussette. Archs. Anat. Histol. Embryol. 14: 83–121.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Philip J. Motta
    • 1
  • Cheryl D. Wilga
    • 2
  1. 1.Department of BiologyUniversity of South FloridaTampaU.S.A.
  2. 2.Biological SciencesUniversity of Rhode IslandKingstonU.S.A.

Personalised recommendations