Advertisement

European Journal of Epidemiology

, Volume 16, Issue 9, pp 869–873 | Cite as

Detection of spirochaetes of Borrelia burgdorferi complexe in the skin of cervids by PCR and culture

  • Pichon Bruno
  • Gilot Bruno
  • Pérez-Eid Claudine
Article

Abstract

To determine whether deer may play a role in the cycle of the Lyme disease spirochete Borrelia burgdorferi, we sought evidence for the presence of the pathogen in skin of deer and roe deer. Biopsies of 2 mm3 were taken at four different levels from nail to tarsus. A total of 50 animals (200 biopsies) were shot in the Lyme disease foci of Rambouillet during the hunting season 1995–1996 and 1996–1997, from the begining of November to the end of February. Borrelia burgdorferi s.l. DNA was detected by PCR in 18 biopsies from 14 animals (28%). Borrelia burgdorferi s.str. was predominant (50%), followed by B. garinii (30%) and B. afzelii (10%). Multiple infections were detected in four animals: same species at different levels or two different species from the same biopsy or from different biopsies from the same foot. A total of 125 biopsies were cultivated on BSKH medium. Cultures at 160 days revealed immobile spiralled forms in 10 cultures. One, from a deer killed at the end of December, was confirmed by PCR as B. burgdorferi s.str. These results, frequency of detection of spirochetes by PCR in the skin, multiple infections and alive spirochetes in biopsies taken out side the season of activity of ticks strongly suggest an affinity of Lyme disease spirochetes for skin of cervids.

Bacteriology Epidemiology Lyme disease Public health Reservoir Ticks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Humair PF, Turrian N, Aeschlimann A, Gern L. Borrelia burgdorferi in a focus of Lyme borreliosis: epizootiologic contribution of small mammals. Folia Parasitol (Praha) 1993; 40: 65–70.Google Scholar
  2. 2.
    Matuschka FR, Fischer P, Heiler M, Richter D, Spielman A. Capacity of european animals as reservoir hosts for the Lyme disease spirochete. J Infect Dis 1992; 165: 479–483.Google Scholar
  3. 3.
    Anderson JF, Johnson RC, Magnarelli LA, Hyde FW. Culturing Borrelia burgdorferi from spleen and kidney tissues of wild-caught white-footed mice, Peromyscus leucopus. Zlb Bakt, Mikrobiol Hyg, Ser A Med Microbiol Infect Dis Virol Parasitol 1986; 263: 34–39.Google Scholar
  4. 4.
    Mather TN, Wilson ML, Moore SI, Ribeiro JMC, Spielman A. Comparing the relative potential of rodents as reservoirs of the Lyme disease spirochete (Borrelia burgdorferi). Am J Epidemiol 1989; 130: 143–150.Google Scholar
  5. 5.
    Doby JM, Betremieux C, Rolland C, Barrat J. Les grands mammifères forestiers, réservoirs de germes pour Borrelia burgdorferi, agent de la maladie de Lyme. Rec Méd Vét 1991; 167: 55–61.Google Scholar
  6. 6.
    Deruaz D, Eid P, Deruaz J, et al. Use of enzyme labelled protein G assay for the detection of anti-Borrelia burgdorferi antibodies in wild animal sera. Eur J Epidemiol 1996; 12: 515–519.Google Scholar
  7. 7.
    Trap D, Vandevelde J, Karoui C, Mahé AM, Gillou JP. La maladie de Lyme chez quelques grands mammifères sauvages en France: Chevreuils, chamois et bouquetins. Rev Sci Off Int Epiz 1993; 12: 165.Google Scholar
  8. 8.
    Magnarelli LA, Anderson JF, Cartter ML. Geographic distribution of white-tailed deer with ticks and antibodies to Borrelia burgdorferi in Connecticut. Yale J Biol Med 1993; 66: 19–26.Google Scholar
  9. 9.
    Isogai E, Isogai H, Masuzawa T, et al. Serological survey of Lyme disease in Sika Deer (Cervus nippon yesoensis) by enzyme-linked immunosorbent assay (ELISA). Microbiol Immunol 1991; 35: 695–703.Google Scholar
  10. 10.
    Kurtenbach K, Sewell H-S, Ogden NH, Randolph SE, Nuttall PA. Serum complement sensitivity as a key factor in Lyme disease ecology. Infect Immun 1998; 66: 1248–1251.Google Scholar
  11. 11.
    Jaenson TGT, Tälleklint L. Incompetence of roe deer as reservoir of the Lyme borreliosis spirochete. J Med Entomol 1992; 29: 813–817.Google Scholar
  12. 12.
    Matuschka FR, Heiler M, Eiffert H, Fischer P, Lotter H, Spielman A. Diversionary role of hoofed game in the transmission of Lyme disease spirochetes. Am J Trop Med Hyg 1993; 48: 693–699.Google Scholar
  13. 13.
    Telford III SR, Mather TN, Moore SI, Wilson ML, Spielman A. Incompetence of deer as reservoirs of the Lyme disease spirochete. Am J Trop Med Hyg 1988; 39: 105–109.Google Scholar
  14. 14.
    Ogden NH, Nuttall PA, Randolph SE. Natural Lyme disease cycles maintained via sheep by cofeeding ticks. Parasitology 1997; 115: 591–599.Google Scholar
  15. 15.
    Kimura K, Isogai E, Isogai H, et al. Detection of Lyme disease spirochetes in the skin of naturally infected wild sika deer (Cervus nippon yesoensis) by PCR. Appl Environ Microbiol 1995; 61: 1641–1642.Google Scholar
  16. 16.
    Oliver JH Jr., Stallknecht D, Chandler FW, James AM, McGuire BS, Howerth E. Detection of Borrelia burgdorferi in laboratory-reared Ixodes dammini (Acari:Ixodidae) fed on experimentally inoculated white-tailed deer. J Med Entomol 1992; 29: 980–984.Google Scholar
  17. 17.
    Pichon B, Mousson L, Figureau C, Rodhain F, Perez-Eid C. Density of Deer in relation to the prevalence of Borrelia burgdorferi s.l. in Ixodes ricinus nymphs in Rambouillet forest, France. Exp Appl Acarol 1998; 23: 1–9.Google Scholar
  18. 18.
    Gilot B, Bonneffille M, Degeilh B, Beaucournu JC, Pichot J, Guiguen C. La colonisation des massifs forestiers par Ixodes ricinus (Linné, 1758) en France: utilisation du chevreuil, Capreolus capreolus (L., 1758) comme marqueur biologique. Parasite 1994; 1: 81–86.Google Scholar
  19. 19.
    Demaerschalck I, Ben Messaoud A, De Kesel M, et al. Simultaneous presence of different Borrelia burgdorferi genospecies in biological fluids of Lyme disease patients. J Clin Microbiol 1995; 33: 602–608.Google Scholar
  20. 20.
    Pichon B, Godfroid E, Hoyois B, Bollen A, Rodhain F, Perez-Eid C. Simultaneous infection of Ixodes ricinus nymphs by two Borrelia burgdorferi sensu lato species: Possible implications for clinical manifestations. Emerg Infect Dis 1995; 1: 89–90.Google Scholar
  21. 21.
    Rijpkema SGT, Molkenboer MJCH, Schouls LM, Jongejan F, Schellekens JFP. Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. J Clin Microbiol 1995; 33: 3091–3095.Google Scholar
  22. 22.
    Bosler EM, Ormiston BG, Coleman JL, Hanrahan JP, Benach JL. Prevalence of the Lyme disease siprochaete in population of white-tailed deer and white-footed mice. Yale J Biol Med 1984; 57: 651–659.Google Scholar
  23. 23.
    Lane RS, Burgdorfer W. Potential role of native and exotic deer and their associated ticks (Acari: Ixodidae) in the ecology of Lyme disease in California, USA. Zlb Bakt, Mikrobiol Hyg, Ser A Med Microbiol Infect Dis Virol Parasitol 1986; 263: 5–64.Google Scholar
  24. 24.
    Aeschliman A, Chamot E, Gigon F, Jeanneret JP, Kesseler D, Walther C. B. burgdorferi in Switzerland. Zlb Bakt, Mikrobiol Hyg, Ser A Med Microbiol Infect Dis Virol Parasitol 1986; 263: 450–458.Google Scholar
  25. 25.
    Gray JS, Kahl O, Janetzky C, Stein J. Studies on the ecology of Lyme disease in a deer forest in country Galway, Ireland. J Med Entomol 1992; 29: 915–920.Google Scholar
  26. 26.
    Deblinger RD, Wilson ML, Rimmer DW, Spielman A. Reduced abundance if immature Ixodes dammini (Acari: Ixodidae) following incremental removal of deer. J Med Entomol 1993; 30: 144–150.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Pichon Bruno
    • 1
  • Gilot Bruno
    • 2
  • Pérez-Eid Claudine
    • 1
  1. 1.Unité d'Écologie des Systèmes Vectoriels – Institut PasteurParis
  2. 2.France

Personalised recommendations