Neurochemical Research

, Volume 25, Issue 9–10, pp 1245–1255 | Cite as

Regulation of AMPA Receptors by Phosphorylation

  • Ana Luísa Carvalho
  • Carlos B. Duarte
  • Arsélio P. Carvalho


The AMPA receptors for glutamate are oligomeric structures that mediate fast excitatory responses in the central nervous system. Phosphorylation of AMPA receptors is an important mechanism for short-term modulation of their function, and is thought to play an important role in synaptic plasticity in different brain regions. Recent studies have shown that phosphorylation of AMPA receptors by cAMP-dependent protein kinase (PKA) and Ca2+ - and calmodulin-dependent protein kinase II (CaMKII) potentiates their activity, but phosphorylation of the receptor subunits may also affect their interaction with intracellular proteins, and their expression at the plasma membrane. Phosphorylation of AMPA receptor subunits has also been investigated in relation to processes of synaptic plasticity. This review focuses on recent advances in understanding the molecular mechanisms of regulation of AMPA receptors, and their implications in synaptic plasticity.

AMPA receptors protein kinase C protein kinase A Ca2+/calmodulin-dependent protein kinase II synaptic plasticity protein phosphatases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hollmann, M. and Heinemann, S. 1994. Cloned glutamate receptors. Annu. Rev. Neurosci. 17:31-108.Google Scholar
  2. 2.
    Hollmann, M. 1996. The topology of glutamate receptors: Sorting through the domains. Pages 39-79, in Monaghan, D. T., and Wenthold, R. (eds.), The Ionotropic Glutamate Receptors, Humana Press, Totowa, New Jersey.Google Scholar
  3. 3.
    Kuner, T., Wollmuth, L. P., and Sakmann, B. 1999. The ionconducting pore of glutamate receptor channels. Pages 219-249, in Jonas, P., and Monyer, H. (eds.), Ionotropic Glutamate Receptors in the CNS, Handbook of Experimental Pharmacology, 141, Springer-Verlag, Berlin.Google Scholar
  4. 4.
    Stern-Bach, Y., Bettler, B., Hartley, M., Sheppard, P. O., O'Hara, P. J., and Heinemann, S. F. 1994. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13:1345-1357.Google Scholar
  5. 5.
    Mano, I., Lamed, Y., and Teichberg, V. I. 1996. A venys flytrap mechanism for activation and desensitization of α-amino-3-hydro-5-methyl-4-isoxazole propionic acid receptors. J. Biol. Chem. 271:15299-15302.Google Scholar
  6. 6.
    Armstrong, N., Sun, Y., Chen, G. Q., and Gouaux, E. 1998. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395:913-917.Google Scholar
  7. 7.
    Monyer, H., Seeburg, P. H., and Wisden, W. 1991. Glutamateoperated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6, 799-810.Google Scholar
  8. 8.
    Mosbacher, J., Schoepfer, R., Monyer, H., Burnachev, N., Seeburg, P. H., and Ruppersberg, J. P. 1994. A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266:1059-1062.Google Scholar
  9. 9.
    Seeburg, P. H., Higuchi, M., and Sprengel, R. 1998. RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res. Rev. 26:217-229.Google Scholar
  10. 10.
    Petralia, R. S., Rubio, M. E., and Wenthold, R. J. 1999. Cellular and subcellular distribution of glutamate receptors. Pages 143-171, in Jonas, P., and Monyer, H. (eds.), Ionotropic Glutamate Receptors in the CNS, Handbook of Experimental Pharmacology, 141, Springer-Verlag, Berlin.Google Scholar
  11. 11.
    Raymond, L. A., Blackstone, C. D., and Huganir, R. L. 1993. Phosphorylation of amino acid neurotransmitter receptors in synaptic plasticity. Trends Neurosci. 16:147-153.Google Scholar
  12. 12.
    Roche, K. W., Tingley, W. G., and Huganir, R. L. 1994. Glutamate receptor phosphorylation and synaptic plasticity. Curr.Opin. Neurobiol. 4:383-388.Google Scholar
  13. 13.
    Lee, H. K. and Huganir, R. L. 1999. Phosphorylation of glutamate receptors. Pages 99-119, in Jonas, P., and Monyer, H. (eds.), Ionotropic Glutamate Receptors in the CNS, Handbook of Experimental Pharmacology, 141, Springer-Verlag, Berlin.Google Scholar
  14. 14.
    Soderling, T. R. and Derkach, V. A. 2000. Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 23:75-80.Google Scholar
  15. 15.
    Knapp, A. G. and Dowling, J. E. 1987. Dopamine enhances excitatory amino acid-gated conductances in cultured retinal horizontal cells. Nature 352:437-439.Google Scholar
  16. 16.
    Wang, L.-Y., Salter, M. W., and MacDonald, J. F. 1991. Regulation of kainate receptors by cAMP-dependent protein kinase and phosphatases. Science 253:1132-1135.Google Scholar
  17. 17.
    Greengard, P., Jen, J., Nairn, A. C., and Stevens, C. F. 1991. Enhancement of the glutamate response by cAMP-dependent protein kinase in hippocampal neurons. Science 253:1135-1138.Google Scholar
  18. 18.
    Rosenmund, C., Carr, D. W., Bergeson, S. E., Nilaver, G., Scott, J. D., and Westbrook, G. L. 1994. Anchoring of protein kinase A is required for modulation of AMPA/kainate receptors on hippocampal neurons. Nature 368:853-856.Google Scholar
  19. 19.
    Keller, B. U., Hollmann, M., Heinemann, S., and Konnerth, A. 1992. Calcium influx through subunits GluR1/GluR3 of kainate/ AMPA receptor channels is regulated by cAMP dependent protein kinase. EMBO J. 11:891-896.Google Scholar
  20. 20.
    Blackstone, C., Murphy, T. H., Moss, S. J., Baraban, J. M., and Huganir, R. L. 1994. Cyclic AMP and synaptic activity-dependent phosphorylation of AMPA-preferring glutamate receptors. J. Neurosci. 14:7585-7593.Google Scholar
  21. 21.
    Wang, L.-Y., Dudek, E. M., Browning, M. D., and MacDonald, J. F. 1994. Modulation of AMPA/kainate receptors in cultured murine hippocampal neurones by protein kinase C. J. Physiol. 475.3:431-437.Google Scholar
  22. 22.
    Carvalho, A. L., Duarte, C. B., Faro, C. J., Carvalho, A. P., and Pires, E. V. 1998. Calcium influx through AMPA receptors and through calcium channels is regulated by protein kinase C in cultured retina amacrine-like cells. J. Neurochem. 70:2112-2119.Google Scholar
  23. 23.
    Dildy-Mayfield, J. E. and Harris, R. A. 1994. Activation of protein kinase C inhibits kainate-induced currents in oocytes expresing glutamate receptor subunits. J. Neurochem. 62:1639-1642.Google Scholar
  24. 24.
    Tan, S.-E., Wenthold, R. J., and Soderling, T. R. 1994. Phosphorylation of AMPA-type glutamate receptors by calcium/ calmodulin-dependent protein kinase II and protein kinase C in cultured hippocampal neurons. J. Neurosci. 14:1123-1129.Google Scholar
  25. 25.
    McGlade-McCulloh, E., Yamamoto, H., Tan, S.-E., Brickey, D. A., and Soderling, T. R. 1993. Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II. Nature 362:640-642.Google Scholar
  26. 26.
    Barria, A., Derkach, V., and Soderling, T. 1997. Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate-type glutamate receptor. J. Biol. Chem. 272:32727-32730.Google Scholar
  27. 27.
    Kolaj, M., Cerne, R., Cheng, G., Brickey, D. A., and Randic, M. 1994. Alpha subunit of calcium/calmodulin-dependent protein kinase enhances excitatory amino acid and synaptic responses of rat spinal dorsal horn neurons. J. Neurophysiol. 72:2525-2531.Google Scholar
  28. 28.
    Yakel, J. L., Vissavajjhala, P., Derkach, V. A., Brickey, D. A., and Soderling, T. R. 1995. Identification of a Ca2+/calmodulindependent protein kinase II regulatory phosphorylation site in non-N-methyl-D-aspartate glutamate receptors. Proc. Natl. Acad. Sci. USA 92:1376-1380.Google Scholar
  29. 29.
    Barria, A., Muller, D., Derkach, V., Griffith, L. C., and Soderling, T. R. 1997. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276:2042-2045.Google Scholar
  30. 30.
    Lee, H.-K., Barbarosie, M., Kameyama, K., Bear, M. F., and Huganir, R. L. 2000. Regulation of distinct receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405:955-959.Google Scholar
  31. 31.
    Pettit, D. L., Perlman, S., and Malinow, R. 1994. Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. Science 266:1881-5.Google Scholar
  32. 32.
    Lledo, P. M., Hjelmstad, G. O., Mukherji, S., Soderling, T. R., Malenka, R. C., and Nicoll, R. A. 1995. Calcium/calmodulindependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc. Natl. Acad. Sci. USA 72:11175-11179.Google Scholar
  33. 33.
    Figurov, A., Boddeke, H., and Muller, D. 1993. Enhancement of AMPA-mediated synaptic transmission by the protein phosphatase inhibitor calyculin A in rat hippocampal slices. Eur. J. Neurosci. 5:1035-41.Google Scholar
  34. 34.
    Yan, Z., Hsieh-Wilson, L., Feng, J., Tomizawa, K., Allen, P. B., Fienberg, A. A., Nairn, A. C., and Greengard, P. 1999. Protein phosphatase 1 regulation of neostriatal AMPA channels: regulation by DARPP-32 and spinophilin. Nature Neurosci. 2:13-17.Google Scholar
  35. 35.
    Roche, K. W., O'Brien, R. J., Mammen, A. L., Bernhardt, J., and Huganir, R. L. 1996. Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16:1179-1188.Google Scholar
  36. 36.
    Banke, T. G., Bowie, D., Lee, H.-K., Huganir, R. L., Schousboe, A., and Traynelis, S. F. 2000. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20:89-102.Google Scholar
  37. 37.
    Mammen, A. L., Kameyama, K., Roche,, K. W., and Huganir, R. L. 1997. Phosphorylation of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J. Biol. Chem. 272:32528-32533.Google Scholar
  38. 38.
    Derkach, V., Barria, A., and Soderling, T. R. 1999. Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. USA 96:3269-3274.Google Scholar
  39. 39.
    Benke, T. A., Luthi, A., Isaac, J. T., and Collingridge, G. L. 1998. Modulation of AMP receptor unitary conductance by synaptic activity. Nature 393:793-797.Google Scholar
  40. 40.
    Lee, H.-K., Kameyama, K., Huganir, R. L., and Bear, M. F. 1998. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21:1151-1162.Google Scholar
  41. 41.
    Price, C. J., Kim, P., and Raymond, L. A. 1999. D1 dopamine receptor-induced cyclic AMP-dependent protein kinase phosphorylation and potentiation of striatal glutamate receptors. J. Neurochem. 73:2441-2446.Google Scholar
  42. 42.
    Snyder, G. L., Allen, P. B., Fienberg, A. A., Valle, C. G., Huganir, R. L., Nairn, A. C., and Greengard, P. 2000. Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J. Neurosci. 20:4480-4488.Google Scholar
  43. 43.
    Carvalho, A. L., Kameyama, K., and Huganir, R. L. 1999. Characterization of phosphorylation sites on the glutamate receptor 4 subunit of the AMPA receptors. J. Neurosci. 19:4748-4754.Google Scholar
  44. 44.
    Matsuda, S., Mikawa, S., and Hirai, H. 1999. Phosphorylation of serine-880 in GluR2 by protein kinase C prevents its C terminus from binding with glutamate receptor-interacting protein. J. Neurochem. 73:1765-1768.Google Scholar
  45. 45.
    Dong, H., O'Brien, R. L., Fung, E. T., Lanahan, A. A., Worley, P. F., and Huganir, R. L. 1997. GRIP: a synaptic PDZ domaincontaining protein that interacts with AMPA receptors. Nature 386:279-284.Google Scholar
  46. 46.
    Matsuda, S., Launey, T., Mikawa, S., and Hirai, H. 2000. Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons. EMBO J. 19:2765-2774.Google Scholar
  47. 47.
    Braithwaite, S. P., Meyer, G., and Henley, J. M. 2000. Interactions between AMPA receptors and intracellular proteins. Neuropharmacol. 39:919-930.Google Scholar
  48. 48.
    Srivastava, S., Osten, P., Vilim, F. S., Khatri, L., Inman, G., States, B., Daly, C., DeSouza, S., Abagyan, R., Valtschanoff, J. G., Weinberg, R. J., and Ziff, E. B. 1998. Novel anchorage of GluR2/3 to the postsynaptic density by AMPA receptor-binding protein ABP. Neuron 21:581-591.Google Scholar
  49. 49.
    O'Brien, R. J., Lau, L. F., and Huganir, R. L. 1998. Molecular mechanisms of glutamate receptor clustering at excitatory synapses. Curr. Opin. Neurobiol. 8:364-369.Google Scholar
  50. 50.
    Ye, B., Liao, D., Zhang, X., Zhang, P., Dong, H., and Huganir, R. L. 2000. GRASP-1: a neuronal RasGEF associated with the AMPA receptor/GRIP complex. Neuron 26:603-617.Google Scholar
  51. 51.
    Xia, J., Zhang, X., Staudinger, J., and Huganir, R. L. 1999. Clustering of AMPA receptors by the synaptic PDZ domaincontaining protein PICK1. Neuron 22:179-187.Google Scholar
  52. 52.
    Colledge, M. and Scott, J. D. 1999. AKAPs: from structure to function. Trends in Cell Biol. 9:216-221.Google Scholar
  53. 53.
    Westphal, R. S., Tavalin, S. J., Lin, J. W., Alto, N. M., Fraser, I. D. C., Langeberg, L. K., Sheng, M., and Scott, J. D. 1999. Regulation of NMDA receptors by an associated phosphatasekinase signaling complex. Science 285:93-96.Google Scholar
  54. 54.
    Klauck, T. M., Faux, M. C., Labudda, K., Langebert, L. K., Jaken, S., and Scott, J. D. 1996. Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science 271:15891592.Google Scholar
  55. 55.
    Strack, S. and Colbran, R. J. 1998. Autophosphorylationdependent targeting of calcium/calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem. 273:20689-20692.Google Scholar
  56. 56.
    Leonard, A. S., Lim, E. A., Hemsworth, D. E., Horne, M. C., and Hell, J. W. 1999. Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proc. Natl. Acad. Sci. USA 96:3239-3244.Google Scholar
  57. 57.
    Hayashi, T., Umemori, H., Mishina, M., and Yamamoto, T.1999. The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. Nature 397:72-76.Google Scholar
  58. 58.
    Balkowiec, A., Kunze, D. L., and Katz, D. M. 2000. Brainderived neurotrophic factor acutely inhibits AMPA-mediated currents in developing sensory neurons. J. Neurosci. 20:1904-1911.Google Scholar
  59. 59.
    Lau, L.-F. and Huganir, R. L. 1995. Differential tyrosine phosphorylation of N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 270:20036-20041.Google Scholar
  60. 60.
    Bliss, T. V. P. and Collingridge, G. L. 1993. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31-39.Google Scholar
  61. 61.
    Kameyama, K., Lee, H.-K., Bear, M. F., and Huganir, R. L. 1998. Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron 21:1163-1175.Google Scholar
  62. 62.
    Neveu, D. and Zucker, R. S. 1996. Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. Neuron 16:619-629.Google Scholar
  63. 63.
    Wenthold, R.vJ., Petralia, R. S., Blahos, J., II, and Niedzielski, A. S. 1996. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J. Neurosci. 16:1982-1989.Google Scholar
  64. 64.
    Lisman, J. 1994. The CaMKII hypothesis for the storage of synaptic memory. Trends Neurosci. 17:406-412.Google Scholar
  65. 65.
    Strack, S., Choi, S., Lovinger, D. M., and Colbran, R. J. 1997. Translocation of autophosphorylated calcium/calmodulindependent protein kinase II to the postsynaptic density. J. Biol. Chem. 272:13467-13470.Google Scholar
  66. 66.
    Chavez-Noriega, L. E. and Stevens, C. F. 1994. Increased transmitter release at excitatory synapses produced by direct activation of adenylate cyclase in rat hippocampal slices. J. Neurosci. 14:310-317.Google Scholar
  67. 67.
    Blitzer, R. D., Wong, T., Nouranifar, R., Iyengar, R., and Landau, E. M. 1995. Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron 15:1403-1414.Google Scholar
  68. 68.
    Dudek, S. M. and Bear, M. F. 1992. Homosynaptic long-term depression in area CA1 of hippocampus and effects on Nmethyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci. USA 89:4363-4367.Google Scholar
  69. 69.
    Cummings, J. A., Mulkey, R. M., Nicoll, R. A., and Malenka, R. C. 1996. Ca2+signaling requirements for long-term depression in the hippocampus. Neuron 16:825-833.Google Scholar
  70. 70.
    Mulkey, R. M., Herron, C. E., and Malenka, R. C. 1993. An essential role for protein phosphatases in hippocampal long-term depression. Science 261:1051-1055.Google Scholar
  71. 71.
    Mulkey, R. M., Endo, S., Shenolikar, S., and Malenka, R. C. 1994. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369:486-488.Google Scholar
  72. 72.
    Ito, M., Sakurai, M. and Tongroach, P. 1982. Climbing fiber induced depression of both mossy fiber responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J. Physiol. 324:113-134.Google Scholar
  73. 73.
    Linden, D. J. and Connor, J. A. 1995. Long-term synaptic depression. Annu. Rev. Neurosci. 18:319-357.Google Scholar
  74. 74.
    Daniel, H., Levenes, C., and Crépel, F. 1998. Cellular mechanisms of cerebellar LTD. Trends Neurosci. 21:401-407.Google Scholar
  75. 75.
    Konnerth, A., Llano, I., and Armstrong, C. M. 1990. Synaptic currents in cerebellar Purkinje cells. Proc. Natl. Acad. Sci. USA 87:2662-2665.Google Scholar
  76. 76.
    Renard, A., Crépel, F., and Audinat, E. 1995. Evidence for two types of non-NMDA receptors in rat cerebellar Purkinje cells. Neuropharmacol. 34:335-346.Google Scholar
  77. 77.
    Zhao, H. M., Wenthold, W., and Petralia, R. S. 1998. Glutamate receptor targeting to synaptic population on Purkinje cells is developmentally regulated. J. Neurosci. 18:5517-5528.Google Scholar
  78. 78.
    Linden, D. J., Dickinson, M. H., Smeye, M., and Connor, J. A. 1991. A long term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron 7:81-89.Google Scholar
  79. 79.
    Konnerth, A., Dreesen, J., and Augustine, G. J. 1992. Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proc. Natl. Acad. Sci. USA 89:7051-7055.Google Scholar
  80. 80.
    Baude, A., Nusser, Z., Roberts, J. D. B., Mulvihill, E., McIlhinney, R. A. J., and Somogyi, P. 1993. The metabotropic glutamate receptor (mGluR1a) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11:771-787.Google Scholar
  81. 81.
    Hidaka, H., Tanaka, T., Onoda, K., Hagiwara, M., Watanabe, M., Ohta, H., Ito, Y., Tsurudome, M., and Yoshida, T. 1988. Cell-specific expression of protein kinase C isozymes in the rabbit cerebellar culture. J. Biol. Chem. 263:4523-4526.Google Scholar
  82. 82.
    Nakamura, S.-I. and Nishizuka, Y. 1994. Lipid mediators and protein kinase C activation for the intracellular signaling network. J. Biochem. 115:1029-1034.Google Scholar
  83. 83.
    Crépel, F. and Krupa, M. 1988. Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. Brain Res. 458:397-410.Google Scholar
  84. 84.
    Ito, M. and Karachot, L. 1992. Protein kinases and phosphatase inhibitors mediating long-term desensitization of glutamate receptors in cerebellar Purkinje cells. Neurosci. Res. 14:27-38.Google Scholar
  85. 85.
    Linden, D. J. and Connor, J. A. 1991. Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 254:1656-1658.Google Scholar
  86. 86.
    Crépel, F., Audinat, E., Daniel, H., Hemart, N., Jaillard, D., Rossier, J., and Lambolez, B. 1994. Cellular locus of the nitric oxide-synthase involved in cerebellar long-term depression induced by high external potassium concentration. Neuropharmacol. 33:1399-1405.Google Scholar
  87. 87.
    Shibuki, K. and Kimura, S. 1997. Dynamic properties of nitric oxide release from parallel fibers in rat cerebellar slices. J. Physiol. 498:443-452.Google Scholar
  88. 88.
    Ariano, M. A., Lewicki, J. A., Brandwein, H. J., and Murad, F. 1982. Immunohistochemical localization of guanylate cyclase within neurons of rat brain. Proc. Natl. Acad. Sci. USA 79:1316-1320.Google Scholar
  89. 89.
    Boxall, A. R. and Garthwaite, J. 1996. Long-term depression in rat cerebellum requires both NO synthase and NO-sensitive guanylyl-cyclase. Eur. J. Neurosci. 8:2209-2212.Google Scholar
  90. 90.
    Keilbach, A., Ruth, P., and Hofmann, F. 1992. Detection of cGMP-dependent protein kinase isozymes by specific antibodies. Eur. J. Biochem. 208:467-473.Google Scholar
  91. 91.
    Endo, S., SuZuki, M., Sumi, M., Nairn, A. C., Morita, R., Yamakawa, K., Greengard, P., and Ito, M. 1999. Molecular identification of human G-substrate, a possible downstream component of the cGMP-dependent protein kinase cascade in cerebellar Purkinje cells. Proc. Natl. Acad. Sci. USA 96:2467-2472.Google Scholar
  92. 92.
    Hall, K. U., Collins, S. P., Gamm, D. M., Massa, E., DePaoli-Roach, A. A., and Uhler, M. D. 1999. Phosphorylation-dependent inhibition of protein phophatase-1 by G-substrate. J. Biol. Chem. 274:3485-3495.Google Scholar
  93. 93.
    Lei, S., Jackson, M. F., Jia, Z., Roder, J., Bai, D., Orser, B. A., and MacDonald, J. F. 2000. Cyclic GMP-dependent feedback inhibition of AMPA receptors is independent of PKG. Nature Neurosci. 3:559-565.Google Scholar
  94. 94.
    Kornhuber, J. and Kornhuber, M. E. 1983. Axo-axonic synapses in the rat striatum. Eur. Neurol. 22:433-436.Google Scholar
  95. 95.
    Freund, T. J., Powell, J., and Smith, A. D. 1984. Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13:1189-1215.Google Scholar
  96. 96.
    Smith, A. D. and Bolam, J. P. 1990. The neuronal network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci. 13:259-265.Google Scholar
  97. 97.
    Martin, L. J., Blackstone, C. D., Huganir, R. L., and Price, D. L. 1993. The striatal mosaic in primates: striosomes and matrix are differentially enriched in ionotropic glutamate receptor subunits. J. Neurosci. 13:782-792.Google Scholar
  98. 98.
    Hersch, S. M., Ciliax, B. J., Gutekunst, C. A., Rees, H. D., Heilman, C. J., Yung, K. K. L., Bolam, J. P., Ince, E., Yi, H., and Levey, A. I. 1995. Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferens. J. Neurosci. 15:5222-5237.Google Scholar
  99. 99.
    Jiang, Z. G. and North, R. A. 1991. Membrane properties of synaptic responses of rat striatal neurones in vitro. J. Physiol. 443:533-553.Google Scholar
  100. 100.
    Kita, H. 1996. Glutamatergic and GABAergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations. Neurosci. 70:5-940.Google Scholar
  101. 101.
    Umemiya, M. and Raymond, L. A. 1997. Dopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons. J. Neurophysiol. 78:1248-1255.Google Scholar
  102. 102.
    Grandy, D. K. and Civelli, O. 1992. G-protein coupled receptors: the new dopamine receptor subtypes. Curr. Opin. Neurobiol. 2:275-281.Google Scholar
  103. 103.
    Allen, P. B., Ouimet, C. C., and Greengard, P. 1997. Spinopilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc. Natl. Acad. Sci. USA 94:9956-9961.Google Scholar
  104. 104.
    Greengard, P., Allen, P. B., and Nairn, A. C. 1999. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23:435-447.Google Scholar
  105. 105.
    Albin, R. L., Young, A. B., and Penney, J. B. 1989. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12:366-375.Google Scholar
  106. 106.
    DiChiara, G., Morelli, M., and Consolo, S. 1994. Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/ NMDA interactions. Trends Neurosci. 17:228-233.Google Scholar
  107. 107.
    Davis, K. L., Kahn, R. S., Ko, G., and Davidson, M. 1991. Dopamine in schizophrenia: a review and reconceptualization. Am. J. Psychiatry 148:1474-1486.Google Scholar
  108. 108.
    Beal, M. F. 1992. Role of excitotoxicity in human neurological disorders. Curr. Opin. Neurobiol. 2:657-662.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Ana Luísa Carvalho
    • 1
  • Carlos B. Duarte
    • 1
  • Arsélio P. Carvalho
    • 2
  1. 1.Center for Neuroscience of Coimbra, Department of ZoologyUniversity of CoimbraCoimbraPortugal
  2. 2.Center for Neuroscience of Coimbra, Department of ZoologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations