Advertisement

Letters in Mathematical Physics

, Volume 49, Issue 1, pp 33–45 | Cite as

On Darboux–Bäcklund Transformations for the Q-Deformed Korteweg–de Vries Hierarchy

  • Ming-Hsien Tu
  • Jiin-Chang Shaw
  • Chin-Rong Lee
Article

Abstract

We study Darboux–Bäcklund transformations (DBTs) for the q-deformed Korteweg–de Vries hierarchy by using the q-deformed pseudodifferential operators. The elementary DBTs are triggered by the gauge operators constructed from the (adjoint) wave functions of the associated linear systems. Iterating these elementary DBTs, we obtain not only q-deformed Wronskian-type but also binary-type representations of the tau-function of the hierarchy.

KdV hierarchy q-deformations Darboux–Bäcklund transformations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Novikov, S., Manakov, S. V., Pitaevskii, L. P., and Zakharov, V. E.: Theory of Solitons: The Inverse Scattering Method, Consultants Bureau, New York, 1984.Google Scholar
  2. 2.
    Hazewinkel, M., Capel, H. W., and de Jager, E. M. (eds): KdV'95, Kluwer Acad. Publ., Dordrecht, 1995.Google Scholar
  3. 3.
    Gelfand I. M. and Dickey L. A.: Funct. Anal. Appl. 10 (1976), 259.Google Scholar
  4. 4.
    Drinfeld, V. G. and Sokolov, V. V.: J. Soviet Math. 30 (1984), 1975.Google Scholar
  5. 5.
    Manin, Y. I. and Radul, A. O.: Comm. Math. Phys. 98 (1985), 65.Google Scholar
  6. 6.
    Zhang, D. H.: J. Phys. A: Math. Gen. 26 (1993), 2389.Google Scholar
  7. 7.
    Frenkel, E. and Reshetikhin, N.: Comm. Math. Phys. 178 (1996), 237.Google Scholar
  8. 8.
    Frenkel, E.: Internat. Math. Res. Notices 2 (1996), 55.Google Scholar
  9. 9.
    Mas, J. and Seco, M.: J. Math. Phys. 37 (1996), 6510.Google Scholar
  10. 10.
    Khesin, B., Lyubashenko, V. and Roger, C.: J. Funct. Anal. 143 (1997), 55.Google Scholar
  11. 11.
    Haine, L. and Iliev, P.: J. Phys. A: Math. Gen. 30 (1997), 7217.Google Scholar
  12. 12.
    Iliev, P.: J. Phys. A: Math. Gen. 31 (1998), L241.Google Scholar
  13. 13.
    Iliev, P.: Lett. Math. Phys. 44 (1998), 187.Google Scholar
  14. 14.
    Adler, M., Horozov, E., and van Moerbeke, P.: Phys. Lett. A 242 (1998), 139.Google Scholar
  15. 15.
    Matveev, V. B. and Salle, M. A.: Darboux Transformations and Solitons, Springer, Heidelberg, 1991.Google Scholar
  16. 16.
    Oevel, W.: Physica A 195 (1993), 533.Google Scholar
  17. 17.
    Oevel, W. and Schief, W.: In: P. Clarkson (ed.), Applications of Analytic and Geometric Methods in Nonlinear Differential Equations, Kluwer Acad. Publ., Dordrecht, 1993.Google Scholar
  18. 18.
    Chau, L. L., Shaw, J. C. and Yen, H. C.: Comm. Math. Phys. 149 (1992), 263.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Ming-Hsien Tu
    • 1
  • Jiin-Chang Shaw
    • 2
  • Chin-Rong Lee
    • 3
  1. 1.Department of MathematicsNational Chung Cheng UniversityMinhsiung, ChiayiTaiwan
  2. 2.Department of Applied MathematicsNational Chiao Tung UniversityHsinchuTaiwan
  3. 3.Department of PhysicsNational Chung Cheng UniversityMinhsiung, ChiayiTaiwan

Personalised recommendations