Advertisement

Environmental Biology of Fishes

, Volume 58, Issue 2, pp 173–182 | Cite as

Diel Movements of Bat Rays, Myliobatis californica, in Tomales Bay, California: Evidence for Behavioral Thermoregulation?

  • Scott A. Matern
  • Joseph J. Cech
  • Todd E. Hopkins
Article

Abstract

We used ultrasonic telemetry to examine movement patterns of 11 bat rays, Myliobatis californica, in Tomales Bay, California. Tomales Bay is long (20 km) and narrow (1.4 km), and is hydrographically separated into outer and inner bay regions. The outer bay (the outermost 8 km) is characterized by oceanic conditions while the shallow inner bay (the innermost 12 km) features wide seasonal temperature shifts. Five rays were tracked monthly from October 1990 to November 1991 and six rays (four of which carried temperature-sensing transmitters) were tracked daily from 30 June to 16 July 1992. Mean bat ray movement rate was 8.84 m min−1 (range 4.49 to 13.40 m min−1) and was not significantly affected by size (p=0.592), tidal stage (p=0.610), or time of day (p=0.327). Movement direction was unrelated to tidal stage (p=0.472) but showed a highly significant diel pattern (p<0.001). From 2:50–14:50 h, rays moved toward the warmer and shallower inner bay, while from 14:50–2:50 h they moved toward the cooler and deeper outer bay. These telemetry data, along with known bat ray foraging patterns and respiratory temperature-sensitivity, argue for behavioral thermoregulation as the primary influence on this movement pattern.

elasmobranch movement behavior Myliobatidae tracking ultrasonic telemetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Ackerman, J.T., M.C. Kondratieff, S.A. Matern & J.J. Cech, Jr. 2000. Tidal influence on spatial dynamics of leopard sharks, Triakis semifasciata, in Tomales Bay, California. Env. Biol. Fish. (in press).Google Scholar
  2. Beitinger, T.L. & L.C. Fitzpatrick. 1979. Physiological and ecological correlates of preferred temperature in fish. Amer. Zool. 19: 319–329.Google Scholar
  3. Bevelhimer, M.S. 1996. Relative importance of temperature, food, and physical structure to habitat choice by smallmouth bass in laboratory experiments. Trans. Amer. Fish. Soc. 125: 274–283.Google Scholar
  4. Beyer, J.M., G. Lucchetti & G. Gray. 1988. Digestive tract evacuation in northern squawfish (Ptychocheilus oregonensis). Can. J. Fish. Aquat. Sci. 45: 548–553.Google Scholar
  5. Biro, P.A. 1998. Staying cool: behavioral thermoregulation during summer by young-of-year brook trout in a lake. Trans. Amer. Fish. Soc. 127: 212–222.Google Scholar
  6. Brett, J.R. 1971. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Amer. Zool. 11: 99–113.Google Scholar
  7. Carey, F.G. & J.V. Scharold. 1990. Movements of blue sharks (Prionace glauca) in depth and course. Mar. Biol. 106: 329–342.Google Scholar
  8. Casterlin, M.E. & W.W. Reynolds. 1979. Shark thermoregulation. Comp. Biochem. Physiol. 3: 451–453.Google Scholar
  9. Cortes, E. & S.H. Gruber. 1992. Gastric evacuation in the young lemon shark, Negaprion brevirostris, under field conditions. Env. Biol. Fish. 35: 205–212.Google Scholar
  10. Fauconneau, B., G. Choubert, D. Blanc, J. Breque & P. Luquet. 1983. Influence of environmental temperature on flow rate of foodstuffs through the gastrointestinal tract of rainbow trout. Aquaculture 34: 1–2.Google Scholar
  11. Gray, A.E., T.J. Mulligan & R.W. Hannah. 1997. Food habits, occurrence, and population structure of the bat ray, Myliobatis californica, in Humboldt Bay, California. Env. Biol. Fish. 49: 227–238.Google Scholar
  12. Gruber, S.H., D.R. Nelson & J.F. Morrissey. 1988. Patterns of activity and space utilization of lemon sharks, Negaprion brevirostris, in a shallow Bahamian lagoon. Bull. Mar. Sci. 43: 61–76.Google Scholar
  13. Holland, K.N., C.G. Lowe, J.D. Peterson & A. Gill. 1992. Tracking coastal sharks with small boats: hammerhead shark pups as a case study. Aust. J. Mar. Freshwater Res. 43: 61–66.Google Scholar
  14. Holts, D.B. & D.W. Bedford. 1993. Horizontal and vertical movements of the shortfin mako shark, Isurus oxyrinchus, in the Southern California Bight. Aust. J. Mar. Freshwater Res. 44: 901–909.Google Scholar
  15. Hopkins, T.E. 1993. The physiological ecology of bat rays Myliobatis californica in Tomales Bay, California. Ph.D. Dissertation, University of California, Davis. 104 pp.Google Scholar
  16. Hopkins, T.E. & J.J. Cech, Jr. 1994. Effect of temperature on oxygen consumption of the bat ray, Myliobatis californica (Chondrichthyes, Myliobatidae). Copeia 1994: 529–532.Google Scholar
  17. Huish, M.T. & C. Benedict. 1978. Sonic tracking of dusky sharks in the Cape Fear River, North Carolina. J. Elisha Mitchell Scien. Soc. 93: 21–26.Google Scholar
  18. Karl, S. & S. Obrebski. 1976. The feeding biology of the bat ray, Myliobatis californica in Tomales Bay, California. pp. 181–186 In: C.A. Simenstad & S.J. Lipovsky (ed.) Fish Food Habits Studies, 1st Pacific Northwest Technical Workshop, Washington Sea Grant, Division of Marine Resources, Astoria.Google Scholar
  19. Klimley, A.P., S.B. Butler, D.R. Nelson & A.T. Stull. 1988. Diel movements of scalloped hammerhead sharks, Sphyrna lewini Griffith & Smith, to and from a seamount in the Gulf of California. J. Fish Biol. 33: 751–761.Google Scholar
  20. Klimley, A.P. & D.R. Nelson. 1984. Diel movement patterns of the scalloped hammerhead shark (Sphyrna lewini) in relation to El Bajo Espiritu Santo: a refuging central-position social system. Behav. Ecol. Sociobiol. 15: 45–54.Google Scholar
  21. McKibben, J.N. & D.R. Nelson. 1986. Patterns of movement and grouping of gray reef sharks, Carcharhinus amblyrhynchos, at Enewetak, Marshall Islands. Bull. Mar. Sci. 38: 89–110.Google Scholar
  22. McLaren, I.A. 1963. Effects of temperature on growth of zooplankton, and the adaptive value of vertical migration. J. Fish. Res. Board Can. 20: 685–727.Google Scholar
  23. Medved, R.J. & J.A. Marshall. 1983. Short-term movements of young sandbar sharks, Carcharhinus plumbeus (Pisces, Carcharhinidae). Bull. Mar. Sci. 33: 87–93.Google Scholar
  24. Miller, D.J. & R.N. Lea. 1972. Guide to the coastal marine fishes of California. Calif. Dept. Fish. Game Fish Bull. 157. 235 pp.Google Scholar
  25. Montgomery, J. & E. Skipworth. 1997. Detection of weak water jets by the short-tailed stingray Dasyatis brevicaudata (Pisces: Dasyatidae). Copeia 1997: 881–883.Google Scholar
  26. Neill, W.H. 1979. Mechanisms of fish distribution in heterothermal environments. Amer. Zool. 19: 305–317.Google Scholar
  27. Neill, W.H. & J.J. Magnuson. 1974. Distributional ecology and behavioral thermoregulation of fishes in relation to heated effluent from a power plant at Lake Monona, Wisconsin. Trans. Amer. Fish. Soc. 103: 663–710.Google Scholar
  28. Nelson, D.R., J.N. McKibben, W.R. Strong, Jr., C.G. Lowe, J.A. Sisneros, D.M. Schroeder & R.J. Lavenberg. 1997. An acoustic tracking of a megamouth shark, Megachasma pelagios: a crepuscular vertical migrator. Env. Biol. Fish. 49: 389–399.Google Scholar
  29. Neverman, D. & W.A. Wurtsbaugh. 1994. The thermoregulatory function of diel vertical migration for a juvenile fish, Cottus extensus. Oecologia 98: 247–256.Google Scholar
  30. Parrish, D.L. & F.J. Margraf. 1990. Gastric evacuation rates of white perch, Morone americana, determined from laboratory and field data. Env. Biol. Fish. 29: 155–158.Google Scholar
  31. Ridge, R.M. 1963. Food habits of the bat ray, Myliobatis californica, from Tomales Bay, California. M.A. Thesis, University of California, Berkeley. 56 pp.Google Scholar
  32. Sciarrotta, T.C. & D.R. Nelson. 1977. Diel behavior of the blue shark, Prionace glauca, near Santa Catalina Island, California. U.S. Fish. Bull. 75: 519–528.Google Scholar
  33. Smith, J.W. & J.V. Merriner. 1985. Food habits and feeding behavior of the cownose ray, Rhinoptera bonasus, in lower Chesapeake Bay. Estuaries 8: 305–310.Google Scholar
  34. Smith, S.V., J.T. Hollibaugh, S.J. Dollar & S.Vink. 1991. Tomales Bay metabolism: C-N-P stoichiometry and ecosystem heterotrophy at the land-sea interface. Est. Coast. Shelf Sci. 33: 223–257.Google Scholar
  35. Sokal, R.R. & F.J. Rohlf 1995. Biometry: the principles and practice of statistics in biological research. W.H. Freeman and Co., New York. 887 pp.Google Scholar
  36. Standora, E.A. & D.R. Nelson. 1977. A telemetric study of the behavior of free-swimming Pacific angel sharks, Squatina californica. Bull. So. Cal. Acad. Sci. 76: 193–201.Google Scholar
  37. Swift, M.C. 1976. Energetics of vertical migration in Chaoborus trivittatus larvae. Ecology 57: 900–914.Google Scholar
  38. Talent, L.G. 1982. Food habits of the gray smoothhound, Mustelus californicus, the brown smoothhound, Mustelus henlei, the shovelnose guitarfish, Rhinobatos productus, and the bat ray, Myliobatis californica, in Elkhorn Slough, California. Calif. Fish. Game 68: 224–234.Google Scholar
  39. Teaf, C.M. 1979. A study of the tidally-oriented movements of the Atlantic stingray, Dasyatis sabina (LeSueur) in Apalachee Bay, Florida. M.S. Thesis, Florida State University, Tallahassee. 48 pp.Google Scholar
  40. Tricas, T.C., L.R. Taylor & G. Naftel. 1981. Diel behavior of the tiger shark, Galeocerdo cuvier, at French Frigate Shoals, Hawaiian Islands. Copeia 1981: 904–908.Google Scholar
  41. Wetherbee, B.M. & S.H. Gruber. 1990. The effects of ration level on food retention time in juvenile lemon sharks, Negaprion brevirostris. Env. Biol. Fish. 29: 59–65.Google Scholar
  42. Winter, J.D. 1983. Underwater biotelemetry. pp. 371–396. In: L.A. Neilsen & D.L. Johnson (ed.) FisheriesTechniques, American Fisheries Society, Bethesda.Google Scholar
  43. Wurtsbaugh, W.A. & D. Neverman. 1988. Post-feeding thermotaxis and daily vertical migration in a larval fish. Nature 333(6176): 846–848.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Scott A. Matern
    • 1
  • Joseph J. Cech
    • 2
  • Todd E. Hopkins
    • 3
  1. 1.Department of Wildlife, Fish, & Conservation BiologyUniversity of California, DavisDavisU.S.A.
  2. 2.Department of Wildlife, Fish, & Conservation BiologyUniversity of California, DavisDavisU.S.A.
  3. 3.Rookery Bay National Estuarine Research ReserveFlorida Department of Environmental ProtectionNaplesU.S.A.

Personalised recommendations