Journal of Elasticity

, Volume 56, Issue 2, pp 171–180 | Cite as

Hoberman's Sphere, Euler Parameters and Lagrange's Equations

  • Oliver M. O'Reilly
  • Peter C. Varadi
Article

Abstract

In this classroom note, we explore how the Euler parameters can be used to represent a particular homogeneous deformation of a continuum. One possible application is Hoberman's sphere. With the assistance of the theory of a pseudo-rigid body, we show how the motion of the continuum can be determined. We also present a new derivation of Lagrange's equations for the rotational dynamics of a rigid body where the rotation tensor is parameterized using Euler parameters.

pseudo-rigid body rigid body dynamics Cosserat point Euler parameters Lagrange's equations homogeneous deformations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.I. Arnol'd, Mathematical Methods of Classical Mechanics. Springer-Verlag, New York (1978).Google Scholar
  2. 2.
    D.E. Carlson and D.A. Tortorelli, On hyperelasticity with internal constraints. Journal of Elasticity 42 (1996) 91-98.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    J. Casey, A treatment of rigid body dynamics. ASME Journal of Applied Mechanics 50 (1983) 905-907 and 51 (1984) 227.MATHCrossRefGoogle Scholar
  4. 4.
    J. Casey, Geometrical derivation of Lagrange's equations for a system of particles. American Journal of Physics 62 (1994) 836-847.MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    J. Casey, On the advantages of a geometrical viewpoint in the derivation of Lagrange's equations for a rigid continuum. Journal of Applied Mathematics and Physics (ZAMP) 46 (1995) S805-S847.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    J. Casey and M.M. Carroll, A discussion of 'A treatment of internally constrained materials,' by J. Casey. ASME Journal of Applied Mechanics 63 (1996) 240.CrossRefGoogle Scholar
  7. 7.
    H. Cohen and R.G. Muncaster, The Theory of Pseudo-rigid Bodies. Springer-Verlag, New York (1988).MATHGoogle Scholar
  8. 8.
    H. Cohen and Q.-X. Sun, Snapping of an elastic pseudo-rigid body. International Journal of Solids and Structures 28 (1991) 807-818.MATHCrossRefGoogle Scholar
  9. 9.
    A.E. Green and P.M. Naghdi, A thermoelastic theory of a Cosserat point with application to composite materials. Quarterly Journal of Applied Mathematics and Mechanics 44 (1991) 335-355.MATHMathSciNetGoogle Scholar
  10. 10.
    M.E. Gurtin, An Introduction to Continuum Mechanics. Academic Press, New York (1981).MATHGoogle Scholar
  11. 11.
    C. Hoberman, Radial expansion/retraction truss structures. U.S. Patent No. 5024031. Issued June 18, 1991.* Google Scholar
  12. 12.
    H.S. Morton, Jr., Hamiltonian and Lagrangian formulations of rigid-body rotational dynamics using Euler parameters. The Journal of the Astronautical Sciences 41 (1993) 569-591.MathSciNetADSGoogle Scholar
  13. 13.
    P.E. Nikravesh, R.A. Wehage and O.K. Kwon, Euler parameters in computational kinematics and dynamics. Part 1. ASME Journal of Mechanisms, Transmission and Automation in Design 107 (1985) 358-365.CrossRefGoogle Scholar
  14. 14.
    T.R. Nordenholz, The Stability of Steady Motions of Pseudo-rigid Bodies. Ph.D. Thesis, University of California at Berkeley (1998).Google Scholar
  15. 15.
    T.R. Nordenholz and O.M. O'Reilly, On steady motions of isotropic, elastic Cosserat points. IMA Journal of Applied Mathematics 60 (1998) 55-72.MATHMathSciNetCrossRefADSGoogle Scholar
  16. 16.
    O.M. O'Reilly and P.C. Varadi, A unified treatment of constraints in the theory of a Cosserat point. Journal of Applied Mathematics and Physics (ZAMP) 49 (1998) 205-223.MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    M.B. Rubin, On the theory of a Cosserat point and its application to the numerical solution of continuum problems. ASME Journal of Applied Mechanics 52 (1985) 368-372.MATHCrossRefGoogle Scholar
  18. 18.
    M.B. Rubin and O. Gottlieb, Numerical solutions of forced vibration and whirling of a nonlinear string using the theory of a Cosserat point. Journal of Sound and Vibration 197 (1996) 85-101.CrossRefADSGoogle Scholar
  19. 19.
    M.D. Shuster, A survey of attitude representations. The Journal of the Astronautical Sciences 41 (1993) 439-517.MathSciNetADSGoogle Scholar
  20. 20.
    J.C. Simo, D. Lewis and J.E. Marsden, Stability of relative equilibria. Part 1: The reduced-energy momentum method. Archive for Rational Mechanics and Analysis 115 (1991) 15-59.MATHMathSciNetCrossRefADSGoogle Scholar
  21. 21.
    S.R. Vadali, On the Euler parameter constraint. The Journal of the Astronautical Sciences 36 (1988) 259-265.Google Scholar
  22. 22.
    P.C. Varadi, G.-J. Lo, O.M. O'Reilly and P. Papadopoulos, A novel approach to vehicle dynamics using the theory of a Cosserat point and its application to collision analyses of platooning vehicles. Vehicle System Dynamics 32 (1999) 85-108.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Oliver M. O'Reilly
    • 1
  • Peter C. Varadi
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of California at BerkeleyBerkeleyU.S.A

Personalised recommendations