Environmental Biology of Fishes

, Volume 57, Issue 1, pp 107–112 | Cite as

Temporal Genetic Variation in a Population of Aphanius fasciatus (Cyprinodontidae) from a Brackish-water Habitat at Elba Island (Italy)

  • Ferruccio Maltagliati
  • Laura Camilli


Allozyme electrophoresis was used to assess temporal genetic variation in three successive generations of the Mediterranean killifish, Aphanius fasciatus. Samplings were carried out in 1995, 1996 and 1997 in a brackish-water habitat at Elba Island, Italy and a total of 212 specimens were collected. The five loci for which polymorphism has been detected in a previous study were assayed. Mean expected heterozygosity values [H=0.397 (SE 0.077), H=0.336 (SE 0.092) and H=0.313 (SE 0.092) in 1995, 1996 and 1997, respectively] were not significantly different by ANOVA test. Deviations from Hardy–Weinberg equilibrium were minimal, with only one out of the 15 probability tests showing a significant departure from the equilibrium; whereas genotypic linkage disequilibrium was not detected. Values of Nei's genetic distance were lower than 0.04. Temporal genetic variation in the A. fasciatus population at Elba Island was observed, with F-statistics indicating significant genetic divergence among samples (θ=0.035, SE 0.027, p<0.001). Genetic drift acting on two loci (GPD-1* and LDH-3*) is presumably the main force determining the temporal genetic heterogeneity observed; however, the occurrence of selection on individual loci and/or sampling error cannot be excluded. The observed allelic variation among generations in a single population of A. fasciatus is much less than levels observed among geographically discrete samples in previous studies.

conservation allozymes generations genetic distance genetic drift selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Bianco, P.G. 1995. Mediterranean endemic freshwater fishes of Italy. Biol. Conserv. 72: 159–170.Google Scholar
  2. Boudouresque, C.-F. 1996. Impact de l'homme et conservation du milieu marin en Méditerranée. GIS Posidonie publications, Marseille. 154 pp.Google Scholar
  3. Cognetti, G. 1994. Colonization of brackish waters. Mar. Pollut. Bull. 28: 583–586.Google Scholar
  4. Crozier, W.W. 1994. Maintenance of genetic variation in hatchery stocks of Atlantic salmon (Salmo salar L.): experiences from the River Bush, Northern Ireland. Aquaculture Fish. Manag. 25: 383–392.Google Scholar
  5. Dempson, J.B., E. Verspoor & J. Hammar 1988. Intrapopulation variation of the Esterase-2 polymorphism in the serum of anadromous Arctic charr, Salvelinus alpinus, from a northern Labrador river. Can. J. Fish. Aquat. Sci. 45: 463–468.Google Scholar
  6. Goudet, J. 1995. FSTAT version 1.2: a computer program to calculate F-statistics. J. Hered. 86: 485–486.Google Scholar
  7. Guo, S.W. & E.A. Thompson. 1992. Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics 48: 361–372.Google Scholar
  8. Hochberg, Y. 1988. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75: 800–802.Google Scholar
  9. Jordan, W.C., A.F. Youngson, D.W. Hay & A. Ferguson. 1992. Genetic protein variation in natural populations of Atlantic salmon (Salmo salar) in Scotland: temporal and spatial variation. Can. J. Fish. Aquat. Sci. 49: 1863–1872.Google Scholar
  10. Kraiem, M.M. 1983. FrLes poissons d'eau douce de Tunisie: inventaire comment, et répartition géographique. Bulletin de l'Institut national scientifique et technique d'océanographie et de pâche de Salammbô 10: 107–124.Google Scholar
  11. Lacson, J.M. & D.C. Morizot. 1991. Temporal genetic variation in subpopulations of bicolor damselfish (Stegastes partitus) inhabiting coral reefs in the Florida Keys. Mar. Biol. 110: 353–357.Google Scholar
  12. Lardicci, C., G. Ceccherelli & F. Rossi. 1997. Streblospio shrubsolii (Polychaeta: Spionidae): temporal fluctuations in size and reproductive activity. Cah. Biol. Mar. 38: 207–214.Google Scholar
  13. Leonardos, I. & A. Sinis. 1998. Reproductive strategy of Aphanius fasciatus Nardo, 1827 (Pisces: Cyprinodontidae) in the Mesolongi and Etolikon lagoons (W. Greece). Fish. Res. 35: 171–181.Google Scholar
  14. Leonardos, I., A. Sinis & D. Petridis. 1996. Influence of environmental factors on the population dynamics of Aphanius fasciatus (Nardo, 1827) (Pisces: Cyprinodontidae) in the lagoons Messolongi and Etolikon (W. Greece). Israel J. Zool. 42: 231–249.Google Scholar
  15. Louis, E.J. & E.R. Dempster. 1987. An exact test for Hardy-Weinberg and multiple alleles. Biometrics 43: 805–811.Google Scholar
  16. Maltagliati, F. 1998a. A preliminary investigation of allozyme genetic variation and population geographical structure in Aphanius fasciatus from Italian brackish-water habitats. J. Fish Biol. 52: 1130–1140.Google Scholar
  17. Maltagliati, F. 1998b. Does the Mediterranean killifish Aphanius fasciatus (Teleostei: Cyprinodontidae) fit the one-dimensional stepping-stone model of gene flow? Env. Biol. Fish. 53: 385–392.Google Scholar
  18. Maltagliati, F. 1999. Genetic divergence in natural populations of the Mediterranean brackish-water killifish Aphanius fasciatus. Mar. Ecol. Prog. Ser. 179: 155–162.Google Scholar
  19. Maruyama, T. 1970. On the fixation probability of mutant genes in a subdivided population. Genet. Res. Camb. 15: 221–226.Google Scholar
  20. McClenaghan Jr., L.R., M.H. Smith & M.W. Smith. 1985. Biochemical genetics of mosquitofish. IV. Changes of allele frequencies through time and space. Evolution 39: 451–460.Google Scholar
  21. Moffett, I.J.J. & W.W. Crozier. 1996. A study of temporal genetic variation in a natural population of Atlantic salmon in the River Bush, Northern Ireland. J. Fish Biol. 48: 302–306.Google Scholar
  22. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.Google Scholar
  23. Parenti, L.R. & C. Tigano. 1993. Polymorphic skeletal characters in Aphanius fasciatus (Teleostei: Cyprinodontiformes). Copeia 1993: 1132–1137.Google Scholar
  24. Piertney, S.B. & G.R. Carvalho. 1995. Microgeographic genetic differentiation in the intertidal isopod Jaera albifrons Leach. II. Temporal variation in allele frequencies. J. Exp. Mar. Biol. Ecol. 188: 277–288.Google Scholar
  25. Powers, D.A., I. Ropson, D.C. Brown, R. Van Beneden, R. Cashon, L.I. Gonzalez-Villaseñor & J.A. DiMichele. 1986. Genetic variation in Fundulus heteroclitus: geographic distribution. Amer. Zool. 26: 131–144.Google Scholar
  26. Raymond, M. & F. Rousset. 1995. Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86: 248–249.Google Scholar
  27. Richards, C. & P.L. Leberg. 1996. Temporal changes in allele frequencies and population's history of severe bottlenecks. Conserv. Biol. 10: 832–839.Google Scholar
  28. Scribner, K.T., M.H. Smith, R.A. Garrott & L.H. Carpenter. 1997. Temporal, spatial, and age-specific changes in genotypic composition of mule deer. J. Mammal. 72: 126–137.Google Scholar
  29. Shaklee, J.B., F.W. Allendorf, D.C. Morizot & G.S. Whitt. 1990. Gene nomenclature for protein-coding loci in fish. Trans. Amer. Fish. Soc. 119: 2–15.Google Scholar
  30. Smith, M.H. & R.K. Chesser. 1981. Rationale for conserving genetic variation of fish gene pools. pp. 13–20. In: N. Ryman (ed.) Fish gene pools, Ecological Bulletin of Stockholm 34, Stockholm.Google Scholar
  31. Tigano, C. & L.R. Parenti. 1988. Homology of the median ethmoid ossification in Aphanius fasciatus and other atherinomorph fishes. Copeia 1988: 866–870.Google Scholar
  32. Villwock, W. 1982. Aphanius (Nardo, 1827) and Cyprinodon (Lac., 1803) (Pisces: Cyprinodontidae), an attempt for a genetic interpretation of speciation. Z. zool. Syst. Evolut.-forsch. 20: 187–197.Google Scholar
  33. Waples, R.S. 1989. Temporal variation in allele frequencies: testing the right hypothesis. Evolution 43: 1236–1251.Google Scholar
  34. Waples, R.S. & D.J. Teel. 1990. Conservation genetics of Pacific salmon. I. Temporal changes in allele frequency. Conserv. Biol. 4: 144–156.Google Scholar
  35. Weir, B.S. 1996. Genetic data analysis II. Methods for discrete population genetics data. Sinauer Associates, Sunderland. 445 pp.Google Scholar
  36. Weir, B.S. & C.C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.Google Scholar
  37. White, S.E., P.K. Kennedy & M.L. Kennedy. 1998. Temporal genetic variation in the raccoon, Procyon lotor. J. Mammal. 79: 747–754.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Ferruccio Maltagliati
    • 1
  • Laura Camilli
    • 2
  1. 1.Dipartimento di Zoologia e Antropologia BiologicaSassariItaly
  2. 2.Dipartimento di Scienze dell'Uomo e dell'AmbientePisaItaly

Personalised recommendations