Environmental Biology of Fishes

, Volume 58, Issue 1, pp 45–52

Growth, Natural Mortality, Length–weight Relationship, Maximum Length and Length-at-first-maturity of the Coelacanth Latimeria chalumnae

  • Rainer Froese
  • Maria Lourdes D. Palomares


Based on the re-interpretation of published data, the von Bertalanffy growth function parameters of the coelacanth, Latimeria chalumnae, are estimated as L=218 cm total length, s.e. 23; K=0.059 (year−1), s.e. 0.012; t0=−3.3 (year), s.e. 0.5, corresponding to a life span of 48 years. The length–weight relationship of the form W=a*TLb, with wet weight (W) in g and total length (TL) in cm, is estimated as a=0.0278, b=2.89, r2=0.893, n=87, range=42.5–183 cm TL. Using extreme value theory, the maximum length for female coelacanths is estimated as 199 cm TL (95% confidence interval=175–223 cm TL) and for males as 168 cm TL (95% confidence interval 155–180 cm TL). Based on data from seven females with embryos or mature eggs, the length-at-first-maturity for females is estimated to be about 150 cm TL, corresponding to an age of about 16 years. Based on the value of t0=−3.3 years and on the presence of three scale rings found in a newborn coelacanth, the period of embryogenesis lasts for about three years, the longest known in vertebrates. The natural mortality rate is estimated at M=0.12. Population food consumption is found to be 1.4 times the existing biomass per year, and gross food conversion efficiency indicates that only 10% of the consumed food is utilized for somatic growth.

von Bertalanffy growth function life-span embryogenesis food consumption biomass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Balon, E.K., M.N. Bruton & H. Fricke. 1988. A fiftieth anniversary reflection on the living coelacanth, Latimeria chalumnae: some new interpretations of its natural history and conservation status. Env. Biol. Fish. 23: 241–280.Google Scholar
  2. Beverton, R.J.H. 1992. Patterns of reproductive strategy parameters in some marine teleost fishes. J. Fish Biol. 41 (Suppl. B): 137–160.Google Scholar
  3. Binohlan, C. 1998. The maturity table. pp. 176–179. In: R. Froese & D. Pauly (ed.) FishBase 98: Concepts, Design and Data Sources, ICLARM, Manila.Google Scholar
  4. Bruton, M.N. 1992. Addition to coelacanth inventory. Env. Biol. Fish. 33: 415.Google Scholar
  5. Bruton, M.N. 1993a. Additions and corrections to the inventory of Latimeria chalumnae: II. Env. Biol. Fish. 36: 398–405.Google Scholar
  6. Bruton, M.N. 1993b. Alterations and addition to coelacanth inventory: III. Env. Biol. Fish. 38: 400–401.Google Scholar
  7. Bruton, M.N. 1999. Alterations and addition to coelacanth inventory: IV. Env. Biol. Fish. 54: 458–461.Google Scholar
  8. Bruton, M.N. & M.J. Armstrong. 1991. The demography of the coelacanth Latimeria chalumnae. Env. Biol. Fish. 32: 301–311.Google Scholar
  9. Bruton, M.N. & S.E. Coutouvidis. 1991. An inventory of all known specimens of the coelacanth Latimeria chalumnae, with comments on trends in the catches. Env. Biol. Fish. 32: 371–390.Google Scholar
  10. Bruton, M.N. & R.E. Stobbs. 1991. The ecology and conservation of the coelacanth Latimeria chalumnae. Env. Biol. Fish. 32: 313–339.Google Scholar
  11. Christensen, V. & D. Pauly. 1992a. The ECOPATH II-a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol. Modelling 61: 169–185.Google Scholar
  12. Christensen, V. & D. Pauly. 1992b. A guide to the ECOPATH II software system (version 2.1). ICLARM Software 6. International Center for Living Aquatic Resources Management, Manila. 72 pp.Google Scholar
  13. Compagno, L.J.V. 1984. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. FAO Fish. Synop. 125, part I: 1–249, part II: 251–655.Google Scholar
  14. Erdmann, M.V., R.L. Caldwell & M.K. Moosa. 1998. Indonesian 'king of the sea' discovered. Nature 395: 335.Google Scholar
  15. Forey, P. 1998. History of the coelacanth fishes. Chapman & Hall, London. 440 pp.Google Scholar
  16. Formacion, S.P., J.M. Rongo & V.C. Sambilay. 1991. Extreme value theory applied to the statistical distribution of the largest lengths of fish. Asian Fish. Sci. 4: 123–135.Google Scholar
  17. Fricke, H., O. Reinicke, H. Hofer & W. Nachtigall. 1987. Locomotion of the coelacanth Latimeria chalumnae in its natural environment. Nature 329: 331–333.Google Scholar
  18. Fritzsch, B. & P. Moller. 1995. A history of electroreception. pp. 39–55. In: P. Moller (ed.) Electric Fishes: History and Behavior, Fish and Fisheries Series 117, Chapman & Hall, London.Google Scholar
  19. Froese, R. & C. Binohlan. 2000. Empirical relationships to estimate asymptotic length, length at first maturity, and length at maximum yield per recruit in fishes. J. Fish Biol. (in press).Google Scholar
  20. Froese, R. & D. Pauly (ed.) 1998. FishBase 98: concepts, design and data sources.With 2 CD-ROMs. ICLARM, Manila. 293 pp.Google Scholar
  21. Froese, R. & D. Pauly (ed.) 1999. FishBase 99: concepts, structure, et sources des données (translators N. Bailly & M.L.D. Palomares). ICLARM, Manila. 324 pp. with 3 CD-ROMs.Google Scholar
  22. Gayanilo, F.C. Jr. & D. Pauly (ed.) 1997. FAO-ICLARM stock assessment tools (FiSAT). Reference manual, FAO Computerized Information Series (Fisheries) No. 8, FAO, Rome. 262 pp.Google Scholar
  23. Gayanilo, F.C. Jr., P. Sparre & D. Pauly. 1996. FAOICLARM stock assessment tools (FiSAT) user's manual. FAO Computerized Information Series (Fisheries) 8, FAO, Rome. 126 pp.Google Scholar
  24. Gumbel, E.J. 1954. Statistical theory of extreme values and some practical applications, a series of lectures. National Bureau of Standards, Applied Mathematics Series, 33. US Government Printing Office, Washington. 51 pp.Google Scholar
  25. Hughes, G.M. 1972. Distribution of oxygen tension in the blood and water along the secondary lamella of icefish gills. J. Exp. Biol. 56: 481–492.PubMedGoogle Scholar
  26. Hughes, G.M. 1976. On the respiration of Latimeria chalumnae. Zool. J. Linn. Soc. 59: 195–208.Google Scholar
  27. Hughes, G.M. & Y. Itazawa. 1972. The effect of temperature on the respiratory function of coelacanth blood. Experientia 28: 1247.PubMedGoogle Scholar
  28. Hureau, J.-C. & C. Ozouf. 1977. Détermination de l'âge et croissance du coelacanthe Latimeria chalumnae Smith, 1939 (Poisson. Crossoptérygien, Coelacanthidé). Cybium 2: 129–137.Google Scholar
  29. IUCN. 1996. 1996 IUCN red list of threatened animals. IUCN, Gland. 378 pp.Google Scholar
  30. Locket, N.A. 1980. Some advances in coelacanth biology. Proc. R. Soc. Lond. B 208: 265–307.PubMedGoogle Scholar
  31. McAllister, D.E. & C.L. Smith. 1978. Mensurations morphologiques, dénombrements méristiques et taxonomie du Coelacanthe, Latimeria chalumnae. Naturaliste Can. 105(2): 63–76.Google Scholar
  32. McCosker, J.E. 1979. Inferred natural history of the living coelacanth. pp. 17–23. In: J.E. McCosker & M.D. Lagios (ed.) The Biology and Physiology of the Living Coelacanth, Occ. Pap. Calif. Acad. Sci. No. 134, San Francisco.Google Scholar
  33. Nammack, M.F., J.A. Musick & J.A. Colvocoresses. 1985. Life history of spiny dogfish off the Northeastern United States. Trans. Amer. Fish. Soc. 114: 367–376.Google Scholar
  34. Northcutt, R.G. 1980. Anatomical evidence of electroreception in the coelacanth (Latimeria chalumnae). Zentralbl. Vet. Med., Reihe C, 9: 289–295.Google Scholar
  35. O'Gorman, R., D.H. Barwick & C.A. Bowen. 1987. Discrepancies between otolith and scale age determinations for alewives from the Great Lakes. pp. 203–210. In: R.C. Summerfeldt & G.E. Hall (ed.) Age and Growth of Fishes, Iowa University Press, Ames.Google Scholar
  36. Palomares, M.L.D. & D. Pauly. 1998. Predicting food consumption of fish populations as functions of mortality, food type, morphometrics, temperature and salinity. Mar. Freshwat. Res. 49: 447–453.Google Scholar
  37. Pauly, D. 1978. A preliminary compilation of fish length growth parameters. Berichte des Instituts für Meereskunde an der Christian-Albrechts Universität, Kiel 55. 200 pp.Google Scholar
  38. Pauly, D. 1980. On the interrelationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. Journal du Conseil International pour l'Exploration de la Mer 39: 175–192.Google Scholar
  39. Pauly, D. 1981. The relationship between gill surface area and growth performance in fish: a generalization of von Bertalanffy's theory of growth. Meeresforsch. 28: 251–282.Google Scholar
  40. Pauly, D. 1984. A mechanism for the juvenile-to-adult transition in fishes. J. Cons., Cons. Int. Explor. Mer 41: 280–284.Google Scholar
  41. Pauly, D. 1998. The gill area table. pp. 205–208. In: R. Froese & D. Pauly (ed.) FishBase 98: Concepts, Design and Data Sources, ICLARM, Manila.Google Scholar
  42. Pauly, D., R. Froese & J.S. Albert. 1998. The brains table. pp. 195–198. In: R. Froese & D. Pauly (ed.) FishBase 98: Concepts, Design and Data Sources, ICLARM, Manila.Google Scholar
  43. Stobbs, R.E. & M.N. Bruton. 1991. The fishery of the Comoros, with comments on its possible impact on coelacanth survival. Env. Biol. Fish. 32: 341–359.Google Scholar
  44. Taylor, C.C. 1958. Cod growth and temperature. J. Cons., Cons. Int. Explor. Mer 23: 366–370.Google Scholar
  45. Uyeno, T. 1984. Age estimation of coelacanth by scale and otolith. pp. 28–29. In: Proceedings of the First Symposium on Coelacanth Studies, Tokyo.Google Scholar
  46. Uyeno, T. 1991. Observations on locomotion and feeding of released coelacanths, Latimeria chalumnae. Env. Biol. Fish. 32: 267–273.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Rainer Froese
    • 1
  • Maria Lourdes D. Palomares
    • 2
  1. 1.International Center for Living Aquatic Resources Management (ICLARM)Makati CityPhilippines
  2. 2.International Center for Living Aquatic Resources Management (ICLARM)Makati CityPhilippines

Personalised recommendations