Advertisement

Letters in Mathematical Physics

, Volume 52, Issue 4, pp 339–342 | Cite as

A(SLq(2)) at Roots of Unity is a Free Module over A(SL(2))

  • Ludwik Dabrowski
  • Cesare Reina
  • Alessandro Zampa
Article

Abstract

It is shown that when q is a primitive root of unity of order not equal to 2 mod 4, A(SLq(2)) is a free module of finite rank over the coordinate ring of the classical group SL(2). An explicit set of generators is provided.

quantum groups roots of unity Hopf algebras 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andruskiewitsch, N.: Notes on extensions of Hopf algebras, Canad. J. Math. 48 (1996), 3–42.Google Scholar
  2. 2.
    Connes, A.: Gravity coupled with matter and the foundation of non commutative geometry, Comm. Math. Phys. 182 (1996), 155–176.Google Scholar
  3. 3.
    Coquereaux, R., Garcia, A. O. and Trinchero, R.: Hopf stars, twisted Hopf stars and scalar products on quantum spaces, math-ph/9904037Google Scholar
  4. 4.
    Dabrowski, L., Hajac, P. M. and Siniscalco, P.: Explicit Hopf-Galois description of SLei/3-induced Frobenius homomorphisms, In: D. Kastler, M. Rosso and T. Schucker (eds), Enlarged Proceedings of the ISI GUCCIA Workshop on Quantum Groups, Noncommutative Geometry and Fundamental Physical Interactions, Palermo, Italy, 1997, Nova Science Pub. Inc., Commack, New York, 1999, pp. 279–299.Google Scholar
  5. 5.
    De Concini, C. and Lyubashenko, V.: Quantum function algebra at roots of 1, Adv. Math. 108 (1994), 205–262.Google Scholar
  6. 6.
    Kastler, D. Uq(s12) for |q| = 1 as the Complexification of a Real Hopf Algebra, Nachr. Akad. Wiss. Göttingen Math-Phys. Kl II, Vanderhoeck and Ruprecht, Göttingen, 1999.Google Scholar
  7. 7.
    Lusztig, G.: Quantum groups at roots of unity, Geom. Dedicata 35 (1991), 89–114.Google Scholar
  8. 8.
    Montgomery, S. and Schneider, H. J.: Prime ideals in Hopf Galois extensions, In preparation.Google Scholar
  9. 9.
    Parshall, B. and Wang, J.: Quantum linear groups, Mem. Amer. Math. Soc. 439 (1991).Google Scholar
  10. 10.
    Reina, C. and Zampa, A.: Quantum homogeneous spaces at roots of unity, In: A. Strasburger et al. (eds.), Quantization, Coherent States and Poisson Structures, Polish Sci. Pub. PWN-Warsaw, 1998.Google Scholar
  11. 11.
    Takeuchi, M.: Some topics on GLq(n), J. Algebra 147 (1992), 379–410.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Ludwik Dabrowski
    • 1
  • Cesare Reina
    • 2
  • Alessandro Zampa
    • 3
  1. 1.SISSATriesteItaly
  2. 2.SISSATriesteItaly
  3. 3.SISSATriesteItaly

Personalised recommendations