Neurochemical Research

, Volume 25, Issue 7, pp 931–940

Endogenous GM1 Ganglioside of the Plasma Membrane Promotes Neuritogenesis by Two Mechanisms

  • Yu Fang
  • Gusheng Wu
  • Xin Xie
  • Zi-Hua Lu
  • Robert W. Ledeen


The influence of GM1 on the neuritogenic phase of neuronal differentiation has been highlighted in recent reports showing upregulation of this ganglioside in the plasma and nuclear membranes concomitant with axonogenesis. These changes are accompanied by alterations in Ca2+ flux which constitute an essential component of the signaling mechanism for axon outgrowth. This study examines 2 distinct mechanisms of induced neurite outgrowth involving plasma membrane GM1, as expressed in 3 neuroblastoma cell lines. Growth of Neuro-2a and NG108-15 cells in the presence of neuraminidase (N'ase), an enzyme that increases the cell surface content of GM1, caused prolific outgrowth of neurites which, in the case of Neuro-2a, could be blocked by the B subunit of cholera toxin (Ctx B) which binds specifically to GM1; however, the latter agent applied to NG108-15 cells proved neuritogenic and potentiated the effect of N'ase. With N18 cells, the combination was also neuritogenic as was Ctx B alone, whereas N'ase by itself had no effect. Neurite outgrowth correlated with influx of extracellular Ca2+, determined with fura-2. Treatment of NG108-15 and N18 cells with Ctx B alone caused modest but persistent elevation of intracellular Ca2+ while a more pronounced increase occurred with the combination Ctx B + N'ase. Treatment with N'ase alone also caused modest but prolonged elevation of intracellular Ca2+ in NG108-15 and Neuro-2a but not N18; in the case of Neuro-2a this effect was blocked by Ctx B. Neuro-2a and N18 thus possess 2 distinctly different mechanisms for neuritogenesis based on Ca2+ modulation by plasma membrane GM1, while NG108-15 cells show both capabilities. The neurites stimulated by N'ase + Ctx B treatment of N18 cells were shown to have axonal character, as previously demonstrated for NG108-15 cells stimulated in this manner and for Neuro-2a cells stimulated by N'ase alone.

GM1 ganglioside neuritogenesis calcium modulation neuraminidase cholera toxin B subunit neuroblastoma cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dreyfus, H., Louis, J. C., Harth, S., and Mandel, P. 1980. Gangliosides in cultured neurons. Neurosci. 5:1647–1655.Google Scholar
  2. 2.
    Ando, S. 1983. Gangliosides in the nervous system. Neurochem. Int. 5:507–537.Google Scholar
  3. 3.
    Yates A. J. 1986. Gangliosides in the nervous system during development and regeneration. Neurochem. Pathol. 5:309–329.Google Scholar
  4. 4.
    Skaper S. D., Leon A., and Toffano G. 1989. Ganglioside function in the development and repair of the nervous system. Mol. Neurol. 3:173–199.Google Scholar
  5. 5.
    Schengrund, C.-L. 1990. The role(s) of gangliosides in neural differentiation and repair: a perspective. Brain Res. Bull. 24:131–141.Google Scholar
  6. 6.
    Ledeen, R. W., and Wu, G. 1992. Ganglioside function in the neuron. Trend. Glycosci. Glycotechnol. 4:174–187.Google Scholar
  7. 7.
    Ferrari, G., Fabris, M., and Gorio, A. 1983. Gangliosides enhanced neurite outgrowth in PC12 cells. Devl. Brain Res. 8:215–221.Google Scholar
  8. 8.
    Katoh-Semba, R., Skaper, S. D., and Varon, S. 1984. Interaction of GM1 ganglioside with PC12 pheochromocytoma cells: serumand NGF-dependent effects on neurite growth (and proliferation). J. Neurosci. Res. 12:299–310.Google Scholar
  9. 9.
    Ledeen, R. W. 1984. Biology of gangliosides: neuritogenic and neuronotrophic properties. J. Neurosci. Res. 12:147–159.Google Scholar
  10. 10.
    Byrne M. C., Ledeen, R. W., Roisen, F. J., Yorke, G., and Sclafani, J. R. 1983. Ganglioside-induced neuritogenesis: verification that gangliosides are the active agents, and comparison of molecular species. J. Neurochem. 41:1214–1222.Google Scholar
  11. 11.
    Massarelli, R., Ferret, B., Gorio, A., Durand, M., and Dreyfus H. 1985. The effect of exogenous gangliosides on neurons in culture: A morphometric analysis. Int. J. Devl.Neurosci. 4:341–348.Google Scholar
  12. 12.
    Cannella, M. S., Roisen, F. J., Ogawa, T., Sugimoto, M., and Ledeen, R. W. 1988. Comparison of epi-GM3 with GM3 and GM1 as stimulators of neurite outgrowth. Devl. Brain Res. 39:137–143.Google Scholar
  13. 13.
    Cannella, M. S., Acher, M. S., and Ledeen, R. W. 1988. Stimulation of neurite outgrowth in vitro by a glycero-ganglioside. Int. J. Devl. Neurosci. 6:319–326.Google Scholar
  14. 14.
    Spirman, N., Sela, B. A., and Schwartz, M. 1982. Antigangliosides antibodies inhibit neuritic outgrowth from regenerating gold-fish retinal explants. J. Neurochem. 39:874–877.Google Scholar
  15. 15.
    Spirman, N., Sela, B.-A., Gilter, C., Calef, E., and Schwartz, M. 1984. Regenerative capacity of the goldfish visual system is affected by antibodies specific to gangliosides injected intracularly. J. Neuroimmunol. 6:197–207.Google Scholar
  16. 16.
    Wu, G., Nakamura, K., and Ledeen, R. W. 1994. Inhibition of neurite outgrowth of neuroblastoma Neuro-2A cells by cholera toxin B-subunit and anti-GM1 antibody. Mol. Chem. Neuropathol. 21:259–271.Google Scholar
  17. 17.
    Wu, G., Lu, Z.-H., and Ledeen, R. W. 1991. Correlation of gangliotetraose gangliosides with neurite forming potential of neuroblastoma cells. Devl. Brain Res. 61:217–228.Google Scholar
  18. 18.
    Dixon, S. J., Stewart, D., Grinstein, S., and Spiegel, S. 1987. Transmembrane signaling by the B subunit of cholera toxin: increased cytoplastomic free calcium in rat lymphocytes. J.Cell Biol. 105:1153–1161.Google Scholar
  19. 19.
    Spiegel, S., and Fishman, P. 1987. Gangliosides as bimodal regulators of cell growth. Proc. Natl. Acad. Sci. USA 84:141–145.Google Scholar
  20. 20.
    Gouy, H., Detterre, P., Debré, P., and Bismuth, G. 1994. Cell calcium signaling via GM1 cell surface gangliosides in the human Jurkat T cell line. J. Immunol. 152:3271–3281.Google Scholar
  21. 21.
    Milani, D., Minozzi, M.-C., Petrelli, L., Guidolin, D., Skaper, S. D., and Spoerri, P. E. 1992. Interaction of ganglioside GM1 with the B subunit of cholera toxin modulates intracellular free calcium in sensory neurons. J. Neurosci. Res. 33:446–475.Google Scholar
  22. 22.
    Marengo, F. D., Wang, S.-Y., Wang, B., and Langer, G. A. 1998. Dependence of cardiac cell Ca2??permeability on sialic acid-containing sarcolemmal gangliosides. J. Mol. Cell. Cardiol. 30: 127–137.Google Scholar
  23. 23.
    Wu, G., and Ledeen, R. W. 1991. Stimulation of neurite outgrowth in neuroblastoma cells by neuraminidase: putative role of GM1 ganglioside in differentiation. J. Neurochem. 56:95–104.Google Scholar
  24. 24.
    Masco, D., Van de Walle, M., and Spiegel, S. 1991. Interaction of ganglioside GM1 with the B subunit of cholera toxin modulates growth and differentiation of neuroblastoma N18 cells. J. Neurosci. 11:2443–2452.Google Scholar
  25. 25.
    Carlson, R. O., Masco, D., Brooker, G., and Spiegel, S. 1994. Endogenous ganglioside GM1 modulates L-type calcium channel activity in N18 neuroblastoma cells. J. Neurosci. 14:2272–2281.Google Scholar
  26. 26.
    Wu, G., and Ledeen, R. W. 1994. Gangliosides as modulators of neuronal calcium. Prog.Brain Res. 101:101–112.Google Scholar
  27. 27.
    Fang, Y., Wu, G., and Ledeen, R. W. 1995. Cellular mechanisms of endogenous GM1-involved neuritogenesis in neuroblastoma cells. J. Neurochem. 64 suppl.: S88 (Abstract).Google Scholar
  28. 28.
    Wu, G., Kozireski-Chubak, D. F., and Ledeen, R. W. 1999. Neuroblastoma cell differentiation and upregulation of nuclear GM1. J. Neurochem. 73 (suppl.):S167.Google Scholar
  29. 29.
    Wu, G., Fang, Y., Lu, Z.-H., and Ledeen, R. W. 1998. Induction of axon-like and dendrite-like processes in neuroblastoma cells. J. Neurocytol. 27:1–14.Google Scholar
  30. 30.
    Bottenstein, J. E., and Sato, G. H. 1979. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. Natl. Acad. Sci. USA 76:514–517.Google Scholar
  31. 31.
    Piros, E. T., Prather, P. L., Loh, H. H., Law, P. Y., Evans, C. J., and Hales, T. G. 1995. Ca2+ channels and adenylyl cyclase modulation by cloned ?-receptors in GH3 cells. Mol. Pharmacol. 47:1041–1049.Google Scholar
  32. 32.
    Narahashi, T., Tsunoo, A., and Mitsunobu, Y. 1987. Characterization of two types of calcium channels in mouse neuroblastoma cells. J. Physiol. 383:231–249.Google Scholar
  33. 33.
    Quiroga, S., Panzetta, P., and Caputto, R. 1990. An endogenous inhibitor of N-acetylgalactosaminyltransferase inhibits retina neuron differentiation in culture. Brain Res. 508:337–340.Google Scholar
  34. 34.
    Conde, C. B., Grabois, V. R., Deza, S. N., and Caputto, B. L. 1997. Identification of an endogenous inhibitor of the UDP-N-acetylgalactosamine: GM3, N-acetylgalactosaminyl tranferase as apolipoprotein A1. Neurochem. Res. 22:483–490.Google Scholar
  35. 35.
    Furuya, S., Ono, K., and Hirabayashi, Y. 1995. Sphingolipid biosynthesis is necessary for dendrite growth and survival of cerebellar Purkinje cells in culture. J. Neurochem. 65:1551–1561.Google Scholar
  36. 36.
    Schwarz, A., Rapaport, E., and Futerman, A. H. 1995. A regulatory role for sphingolipids in neuronal growth. J. Biol. Chem. 270:10990–10998.Google Scholar
  37. 37.
    Uemura, K., Sugiyama, E., and Taketomi, T. 1991. Effect of an inhibitor of glucosylceramide synthase on glycosphingolipid synthesis and neurite outgrowth in murine neuroblastoma cell lines. J. Biochem. (Japan) 110:96–102.Google Scholar
  38. 38.
    Walsh, F. S., Skaper, S. D., and Doherty, P. 1994. Cell adhesion molecule (NCAM and N-cadherin)-dependent neurite outgrowth is modulated by gangliosides. Prog. Brain Res. 101:113–118.Google Scholar
  39. 39.
    Wu, G., Lu, Z.-H., Nakamura, K., Spray, D. C., and Ledeen, R. W. 1996. Trophic effect of cholera toxin B subunit in cultured cerebellar granule neurons: modulation of intracellular calcium by GM1 ganglioside. J. Neurosci. Res. 44:243–254.Google Scholar
  40. 40.
    Buckley, N. E., Su, Y., Milstien, A., and Spiegel, S. 1995. The role of calcium influx in cellular proliferation induced by interaction of endogenous ganglioside GM1 with the B subunit of cholera toxin. Biochim. Biophys. Acta 1256:275–283.Google Scholar
  41. 41.
    Ravichandra, B., and Joshi, P. G. 1999. Regulation of transmembrane signaling by ganglioside GM1: interaction of anti-GM1 with Neuro2a cells. J Neurochem. 73:557–567.Google Scholar
  42. 42.
    Langer, G. A., Frank, J. S., Nudd, L. M., and Seraydarian, K. 1976. Sialic acid: effect of removal on calcium exchangeability of cultured heart cells. Science 193:1013–1015.Google Scholar
  43. 43.
    Nathan, R. D., Fung, S. J., Stocco, D. M., Barron, E. A., and Markwald, R. R. 1980. Sialic acid: regulation of electrogenesis in cultured heart cells. Am. J. Physiol. 239:C197-C207.Google Scholar
  44. 44.
    Ledeen, R. W., Wu, G., Lu, Z. H., Kozireski-Chubak, D. F., and Fang, Y. 1998. The role of GM1 and other gangliosides in neuronal differentiation-Overview and new findings. Ann. N.Y. Acad. Sci. 845:161–175.Google Scholar
  45. 45.
    Alkon, D. L., and Rasmussen H. 1988. A spatial-temporal model of cell activation. Science 239:998–1004.Google Scholar
  46. 46.
    Wu, G., Vaswani, K. K., Lu, Z.-H., and Ledeen, R. W. 1990. Gangliosides stimulate calcium flux in Neuro-2A cells and require exogenous calcium for neuritogenesis. J. Neurochem. 55: 484–491.Google Scholar
  47. 47.
    . Isasi, S. C., Bianco, I. D., and Fidelio, G. D. 1995. Gangliosides raise the intracellular Ca2+ level in different cell types. Life Sci. 57:449–45.Google Scholar
  48. 48.
    Hilbush, B. S., and Levine, J. M. 1992. Modulation of a Ca2? signaling pathway by GM1 ganglioside in PC12 cells. J. Biol. Chem. 267:24789–24795.Google Scholar
  49. 49.
    De Erausquin, G. A., Manev, H., Guidotti, A., Costa, E., and Brooker, G. 1990. Gangliosides normalize distorted singlecell intracellular free Ca2+ dynamics after toxic doses of glutamate in cerebellar granule cells. Proc. Natl. Acad. Sci. USA 87:8017–8021.Google Scholar
  50. 50.
    Guerold, B., Massarelli, R., Forster, V., Freysz, L., and Dreyfus, H. 1992. Exogenous gangliosides modulate calcium fluxes in cultured neuronal cells. J. Neurosci. Res. 32:110–115.Google Scholar
  51. 51.
    Guan, Z., Stokes, B. T., Brocklyn, J. R. V., and Yates, A. J. 1992. Gangliosides inhibit platelet-derived growth-factor-stimulated increase in intracellular calcium in Swiss 3T3 cells. Biochim. Biophys. Acta 1136:315–318.Google Scholar
  52. 52.
    Nakamura, K., Wu, G., and Ledeen, R. W. 1992. Protection of Neuro-2a cells against calcium ionophore cytotoxicity by gangliosides. J. Neurosci. Res. 31:245–253.Google Scholar
  53. 53.
    Kozireski-Chubak, D. F., Wu, G., and Ledeen, R.W. 1999. Axonogenesis in Neuro-2a cells correlates with GM1 upregulation in the nuclear and plasma membranes. J. Neurosci. Res. 57: 541–550.Google Scholar
  54. 54.
    Wu, G., Lu, Z.-H., and Ledeen, R. W. 1995. Induced and spontaneous neuritogenesis associated with enhanced expression of ganglioside GM1 in the nuclear membrane. J Neurosci. 15:3739–3746.Google Scholar
  55. 55.
    Kozireski-Chubak, D. F., Wu, G., and Ledeen, R. W. 1999. Upregulation of nuclear GM1 accompanies axon-like, but not dendrite-like, outgrowth in NG108–15 cells. J. Neurosci. Res. 55:107–118.Google Scholar
  56. 56.
    Wu, G., Lu, Z.-H., and Ledeen, R. W. 1995. GM1 ganglioside in the nuclear membrane modulates nuclear calcium homeostasis during neurite outgrowth. J. Neurochem. 64:1419–1422.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Yu Fang
    • 1
  • Gusheng Wu
    • 1
  • Xin Xie
    • 1
  • Zi-Hua Lu
    • 1
  • Robert W. Ledeen
    • 2
  1. 1.New Jersey Medical SchoolUMDNJ, Department of Neurosciences MSB-H506Newark
  2. 2.New Jersey Medical SchoolUMDNJ, Department of Neurosciences MSB-H506ewark

Personalised recommendations