Neurochemical Research

, Volume 25, Issue 7, pp 915–921 | Cite as

Effect of Chronic Variate Stress on Thiobarbituric-Acid Reactive Species and on Total Radical-Trapping Potential in Distinct Regions of Rat Brain

  • L. P. Manoli
  • G. D. Gamaro
  • P. P. Silveira
  • C. Dalmaz


It has been suggested that oxidative stress is involved in aging and neuropathologic disorders. In addition, chronic stress and high corticosterone levels are suggested to induce neuronal death. The aim of this study is to verify the effect of chronic variate stress on lipoperoxidation and on the total radical-trapping potential (TRAP) in hippocampus, hypothalamus and cerebral cortex. Adult male Wistar rats were submitted to different stressors during 40 days. Lipid peroxide levels were assessed by the thiobarbituric acid reactive species (TBARS) reaction, and TRAP was measured by the decrease in luminescence using the 2-2′-azo-bis(2-amidinopropane)-luminol system. The results showed that in cerebral cortex homogenates chronic stress induces an increase in oxidative stress. In hypothalamus a decreased lipoperoxidation was observed, however TRAP showed no difference. In hippocampus no difference was observed. We concluded that prolonged stress induces oxidative stress which varies selectively with the brain region.

Chronic stress lipoperoxidation free radicals TBARS TRAP ROS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Richardson, S. J., 1993. Free radicals in the genesis of Alzheimer's disease. Ann. N.Y. Acad. Sci. 695:73–76.Google Scholar
  2. 2.
    Ben-Shachar, D., and Riederer, P., 1991. Iron-melanin interaction and lipid peroxidation: Implication for Parkinson's disease. J. Neurochem., 57:1609–1614.Google Scholar
  3. 3.
    Braughler, J. M., and Hall, E. D., 1989. Central nervous system trauma and stroke. Biochemical considerations for oxygen radicals formation and lipid peroxidation. Free Radical Biol. Med. 6:289–301.Google Scholar
  4. 4.
    Viani, P., Cervato, G., Fiorilli, A., and Cestaro, B., 1991. Age-related differences in synaptosomal peroxidative damage and membrane properties. J. Neurochem., 56:253–258.Google Scholar
  5. 5.
    Ames, B. N., Shigenaga, M. K., and Hagen, T. M., 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci., 90:7915–7922.Google Scholar
  6. 6.
    Sandhir, R., Julka, D., and Dip Gill, K., 1994. Lipoperoxidative damage on lead exposure in rat brain and its implications on membrane bound enzymes. Pharmacol. Toxicol., 74:66–71.Google Scholar
  7. 7.
    Rijnberk, A., and Mol, J. A., 1997. Adrenocortical function. Pages 553–570, in Kaneko, J. J., Harvey, J. W., Bruss, M. L., (ed.) Clinical Biochemistry of Domestic Animals. 5th ed. San Diego, Academic Press.Google Scholar
  8. 8.
    McIntosh, L., and Sapolsky, R., 1996. Glucocorticoids increase the accumulation of reactive oxygen species and enhance adriamycin-induce toxicity in neuronal culture. Exp. Neurol. 141:201–206.Google Scholar
  9. 9.
    Cochrane, C., 1991. Mechanisms of oxidant injury of cells. Mol. Aspects Med. 12:137–147.Google Scholar
  10. 10.
    Sosnovsky, A. S., and Kozlov, A. V., 1992. Enhancement of lipid peroxidation in the rat hypothalamus after short-term emotional stress. Bull. Exp. Biol. Med. 113:653–655.Google Scholar
  11. 11.
    Liu, J., Wang, X., and Morris, A., 1994. Immobilization stress-induced antioxidant defences changes in rats plasma: Effect of treatment with reduced glutathione. Int. J. Biochem. 26:511–517.Google Scholar
  12. 12.
    McIntosh, L. J., Cortopassi, K. M., Sapolsky, R M., 1998. Glucocorticoids may alter antioxidant enzyme capacity in the brain: kainic acid studies. Brain Res. 791:215–222.Google Scholar
  13. 13.
    Katz, R. J., 1982. Animal model of depression: Pharmacological sensitivity of a hedonic deficit. Pharmacol. Biochem. Behav. 16:965–968.Google Scholar
  14. 14.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  15. 15.
    Buege, J. A., and Aust, S. D., 1987. Microssomal lipid peroxidation Meth. Enzymol. 52:302–310.Google Scholar
  16. 16.
    Lissi, E., Pascual, C., del Castillo, M. D., 1992. Luminol luminescence induced by 2,2'-azo-bis(2-amidinopropane) thermolysis. Free Radic. Res. Commun. 17:299–311.Google Scholar
  17. 17.
    Wade, C. R., Jackson, P. G., Highton, J., van Rij, A. M., 1987. Lipid peroxidation and malondialdehyde in the synovial fluid and plasma of patients with rheumatoid arthritis. Clin. Chim. Acta 164:245–250.Google Scholar
  18. 18.
    Valenzuela, A., 1991. The biological significance of malondialdehyde determination in the assessment of tissue oxidative stress. Life Sci. 48:301–309.Google Scholar
  19. 19.
    Halliwell, B., and Gutteridge, J. M C., 1989. Free Radicals in Biology and Medicine. 2nd ed. Oxford, Clarendon Press.Google Scholar
  20. 20.
    Janero, D. R., 1990. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indexes of lipid-peroxidation and peroxidative tissue-injury. Free Radic. Biol. Med. 9:515–540.Google Scholar
  21. 21.
    Fukuhara, K., Suzuki, M., Unno, M., Rahman, M. M., Endo, K., and Matsuno, S., 1999. The degree of hepatic regeneration after partial hepatectomy in rats with peritonitis and the role of lipid peroxidation. Free Radic. Biol. Med. 26:881–886.Google Scholar
  22. 22.
    Almeida, A. M., Bechara, E. J. H., Vercesi, A. E., and Nantes, I. L., 1999. Diphenylacetaldehyde-generated excited states promote damage to isolated rat liver mitochondrial DNA phospholipids, and proteins. Free Rad. Biol. Med. 27:744–751.Google Scholar
  23. 23.
    Tate, Jr. D. J., Miceli, M. V., and Newsome, D. A., 1999. Zinc protects against oxidative damage in cultured human retinal pigment epithelial cells. Free Rad. Biol. Med 26:704–713.Google Scholar
  24. 24.
    Day, B. J., Batinic-Haberle, I., and Crapo, J. D., 1999. Metalloporphyrins are potent inhibitors of lipid peroxidation. Free Rad. Biol. Med, 26:730–736.Google Scholar
  25. 25.
    Kosenko, E., Kaminski, Y., Lopata, O., Muravyov, N., and Felipo, V., 1999. Blocking NMDA receptors prevents the oxidative tress induced by acute ammonia intoxication. Free Rad. Biol. Med, 26:1369–1374.Google Scholar
  26. 26.
    Barbieri, E. R., Hidalgo, M. E., Venegas, A., Smith, R., and Lissi, E. A., 1999. Varicocele-associated decrease in antioxidant defenses. J. Androl. 20:713–717.Google Scholar
  27. 27.
    Kondakova, I., Lissi, E. A., and Pizarro, M., 1999. Total reactive antioxidant potential in human saliva of smokers and nonsmokers. Biochem. Mol. Biol. Int. 47:911–920.Google Scholar
  28. 28.
    Pascual, C., and Reinhart, K., 1999. Effect of antioxidants on induction time of luminol luminescence elicited by 3-morpholinosydnonimine (SIN-1). Luminescence 14:83–89.Google Scholar
  29. 29.
    Demasi, M., Costa, C. A., Pascual, C., Llesuy, S., and Bechara, E. J., 1997. Oxidative tissue response promoted by 5-aminolevulinic acid promptly induces the increase of plasma antioxidant capacity. Free Radic. Res. 26:235–243.Google Scholar
  30. 30.
    Smith, R., Vantman, D., Ponce, J., Escobar, J., and Lissi, E., 1996. Total antioxidant capacity of human seminal plasma. Hum. Reprod. 11:1655–1660.Google Scholar
  31. 31.
    Lissi, E., Salim-Hanna, M., Pascual, C., and del Castillo, M. D., 1995. Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Rad. Biol. Med, 18:153–158.Google Scholar
  32. 32.
    Prior, R. L., and Cao, G., 1999. In vivo total antioxidant capacity: Comparison of different analytical methods. Free Rad. Biol. Med, 27:1173–1181.Google Scholar
  33. 33.
    Oishi, K., Yokoi, M., Maekawa, S., Sodeyama, C., Shiraishi, T., Kondo, R., Kuriyama, T., and Machida, K., 1999. Oxidative stress and haematological changes in immobilized rats. Acta Physiol. Scand. 165:65–69.Google Scholar
  34. 34.
    Liu, J., Wang, X., Shigenaga, M. K., Yeo, H. C., Mori, A., and Ames, B. N., 1996. Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. FASEB J. 10:1532–1538.Google Scholar
  35. 35.
    McIntosh, L. J., Hong, K. E., and Sapolsky, R. M., 1998. Glucocorticoids may alter antioxidant enzyme capacity in the brain: baseline studies. Brain Res. 791:209–214.Google Scholar
  36. 36.
    Hermen, J. P., Adams, D., and Prewitt, C., 1995. Regulatory changes in neuroendocrine stress-integrative circuitry produced by a variable stress paradigm. Neuroendocrinol. 61:180–190.Google Scholar
  37. 37.
    Andrews, N., Zharkovsky, A., and File, S. E., 1992. Acute handling stress downregulates benzodiazepine receptors: Reversal by diazepam. Eur. J. Pharmacol. 210:247–251.Google Scholar
  38. 38.
    Biggio, G., Corda, M. G., Concas, A., Demontis, G., Rossetti, Z., and Gessa, G. L., 1981. Rapid changes in GABA binding induced by stress in different areas of the rat brain. Brain Res. 229:363–369.Google Scholar
  39. 39.
    Boix, F., Fernandez Teruel, A., Escorihuela, R. M., and Tobena, A., 1990. Handling-habituation prevents the effects of diazepam and alprazolam on brain serotonin levels in rats. Behav. Brain Res. 36:209–215.Google Scholar
  40. 40.
    File, S. E., and Fluck, E., 1994. Handling alters habituation and response to stimulus change in the holoboard. Pharmacol. Biochem. Behav. 49:449–453.Google Scholar
  41. 41.
    Baek, B. S., Kwon, H. J., Lee, K. H., Yoo, M. A., Kim, K. W., Ikeno, Y., Yu, B. P., and Chung, H. Y., 1999. Regional difference of ROS generation, lipid peroxidation, and antioxidant enzyme activity in rat brain and their dietary modulation. Arch. Pharm. Res. 22:361–366.Google Scholar
  42. 42.
    Babu, G. N., and Bawari, M., 1997. Single microinjection of L-glutamate induces oxidative stress in discrete regions of rat brain. Biochem. Mol. Biol. Int. 43:1207–1217.Google Scholar
  43. 43.
    Musavi, S., and Kakkar, P., 1998. Diazepam induced early oxidative changes at the subcellular level in rat brain. Mol. Cell. Biochem. 178:41–46.Google Scholar
  44. 44.
    Cardozo-Pelaez, F., Song, S., Parthasarathy, A., Hazzi, C., Naidu, K., and Sanchez-Ramos, J., 1999. Oxidative DNA damage in the aging mouse brain. Mov. Disord. 14:972–980.Google Scholar
  45. 45.
    Lores Arnaiz, S., Travacio, M., Llesuy, S., and Rodriguez de Lores Arnaiz, G. 1998. Regional vulnerability to oxidative stress in a model of experimental epilepsy. Neurochem. Res. 23:1477–1483.Google Scholar
  46. 46.
    Ciriolo, M. R., Fiskin, K., De Martino, A., Corasaniti, M. T., Nistico, G., and Rotilio, G., 1991. Age-related changes in Cu,Zn superoxide dismutase, Se-dependent and-independent glutathione peroxidase and catalase activities in specific areas of rat brain. Mech. Ageing Dev. 61:287–297.Google Scholar
  47. 47.
    Somani, S. M., Husain, K., Diaz-Phillips, L., Lanzotti, D. J., Kareti, K. R., and Trammell, G. L., 1996. Interaction of exercise and ethanol on antioxidant enzymes in brain regions of the rat. Alcohol 13:603–610.Google Scholar
  48. 48.
    Sudakow, K. V., and Sosnovsky, A. S., 1996. Lipid peroxidation and antioxidant enzymes in brain regions after imobilization stress in August Rats: Correlation with behavioral patterns. IN: Free Radicals in Brain Physiology and Disorders. San Diego, Academic Press. p. 377–386.Google Scholar
  49. 49.
    D'Almeida, V., Lobo, L. L., Hipolide, D. C., de Oliveira, A. C., Nobrega, J. N., and Tufik, S., 1998. Sleep deprivation induces brain region-specific decreases in glutathione levels. Neuroreport 9:2853–2856.Google Scholar
  50. 50.
    Somani, S. M., and Husain, K., 1997. Interaction of exercise training and chronic ethanol ingestion on antioxidant system of rat brain regions. J. Appl. Toxicol. 17:329–336.Google Scholar
  51. 51.
    Abbott, L. C., Nejad, H. H., Bottje, W. G., and Hassan, A. S., 1990. Glutathione levels in specific brain regions of genetically epileptic (tg/tg) mice. Brain Res Bull. 25:629–631.Google Scholar
  52. 52.
    Binienda, Z., and Kim, C. S., 1997. Increase in levels of total free fatty acids in rat brain regions following 3-nitropropionic acid administration. Neurosci. Lett. 230:199–201.Google Scholar
  53. 53.
    Cullinan, W. E., Herman, J. P., Helmreich, D. L., and Watson Jr., S. J., 1995. A Neuroanatomy of Stress. IN: Friedman, M. J., Charney, D. S., Deutch, A. Y., editors. Neurobiological and Clinical Consequences of Stress-From Normal Adaptation to Post-Traumatic Stress Disorder. Philadelphia, Lippincott-Raven, p. 3–26.Google Scholar
  54. 54.
    Lezoualch, F., Engert, S., Berning, B., and Behl, C., 2000. Corticotropin-releasing hormone-mediated neuroprotection against oxidative stress is associated with the increased release of nonamyloidogenic amyloid beta precursor protein and with the suppression of nuclear factor-kappa B. Mol. Endocrinol. 14: 147–159.Google Scholar
  55. 55.
    Tang, L. H. and Aizenman, E., 1993. The modulation of N-methyl-D-Aspartate receptors by redox, alkylating reagents in rat cortical neurons in vitro. J Physiol. 465:303–323.Google Scholar
  56. 56.
    Haile, D. J., Roualt, T. A., Harford, J. B., Kennedy, M. C., Blondin, G. A., Beinert, H., and Klausner, R. D., 1992. Cellular regulation of the iron-responsive element binding protein: Disassembly of the cubane iron-sulfur cluster results in high-affinity RNA binding. Proc. Natl. Acad. Sci. 89:11735–11739.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • L. P. Manoli
    • 1
  • G. D. Gamaro
    • 1
  • P. P. Silveira
    • 1
  • C. Dalmaz
    • 2
  1. 1.Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUFRGSPorto Alegre, RSBrazil
  2. 2.Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUFRGSPorto Alegre, RSBrazil

Personalised recommendations