Mathematical Geology

, Volume 32, Issue 3, pp 367–379 | Cite as

Blending-Based Stochastic Simulator

  • J. L. Mallet
  • A. Shtuka
Article
  • 43 Downloads

Abstract

This paper presents a new method of constructing random functions whose realizations can be evaluated efficiently. The basic idea is to “blend,” both stochastically and linearly, a limited set of independent initial realizations previously generated by any chosen simulation method. The blending stochastic coefficients are determined in such a way that the new random function so generated has the same mean and covariance functions as the random function used for generating the initial realizations.

random functions simulation geostatistics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Deutsch, C. V., and Journel, A. G., 1998, GSLIB: Geostatistical Software Library and User's Guide, 2nd ed.: Oxford University Press, New York, 369 p.Google Scholar
  2. Feller, W., 1966, An introduction to probability theory and its applications: v. 1: John Wiley, New York, 669 p.Google Scholar
  3. Fourgeaux, C., and Fuchs, A., 1972, Statistique: Dunod, Monographies Universitaires de mathematiques, v. 24, Paris, 334 p.Google Scholar
  4. Gomez, J., and Journel A. G., 1993, Joint sequential simulation of MultiGaussian Fields, in Soares, A., ed., Geostatistics Troia 92: Kluwer, Dordrecht, p. 493–506.Google Scholar
  5. Goovaerts, P., 1997, Geostatistics for natural resources evaluation: Oxford Univ. Press, New York, 481 p.Google Scholar
  6. Goovaerts, P., 1998, Accounting for estimation optimality criteria in simulated annealing: Math. Geology, v. 30, no. 5, p. 511–534.Google Scholar
  7. Journel, A. G., 1989, Fundamentals of geostatistics in five lessons: Short course presented at the 28th International Geological Congress, Washington, DC, American Geophysical Union, 40 p.Google Scholar
  8. Journel, A. G., and Huijbregts, CH. J., 1978, Mining geostatistics: Academic Press, New York, 600 p.Google Scholar
  9. Matheron, G., 1973, The intrinsic random functions and their applications: Advances in Applied Probability, v. 5, p. 439–468.Google Scholar
  10. Metivier, M., 1968, Notions fondamentales de la theorie des Probabilities: Dunod, Paris, 304 p.Google Scholar
  11. Schwartz L., 1959, Théorie des distributions, 2nd ed.: Hermann, Paris, 418 p.Google Scholar
  12. Srivastava, R. M., 1992, Reservoir characterization with probability field simulation, in Proceedings of the 67th SPE Conference, Washington, DC, paper no. 24753, Soc. of Pet. Eng., p. 927–938.Google Scholar
  13. Tarantola, A., 1987, Inverse problem theory: Elsevier, Amsterdam, 613 p.Google Scholar
  14. Tompson, A. F. B., Abadou, R., and Gelhar, L. W., 1989, Implementation of the three-dimensional turning bands random field generator: Water Resources Res., v. 25, no. 10, p. 2227–2243.Google Scholar
  15. Verly, G., 1993, Sequential gaussian cosimulation: A simulation method integrating several types of information, in Soares A., ed., Geostatistics Troia '92: Kluwer Academic Publishers, Dordrecht, p. 543–554.Google Scholar

Copyright information

© International Association for Mathematical Geology 2000

Authors and Affiliations

  • J. L. Mallet
    • 1
  • A. Shtuka
    • 2
  1. 1.gOcad Research GroupEcole Nationale Supérieure de Géologie (INPL/CRPG/LORIA)Vandoeuvre-les-NancyFrance
  2. 2.gOcad Research GroupEcole Nationale Supérieure de Géologie (INPL/CRPG/LORIA)Vandoeuvre-les-NancyFrance

Personalised recommendations