Advertisement

Pharmaceutical Research

, Volume 17, Issue 6, pp 707–714 | Cite as

Polyisobutylcyanoacrylate Nanocapsules Containing an Aqueous Core as a Novel Colloidal Carrier for the Delivery of Oligonucleotides

  • Gregory Lambert
  • Elias Fattal
  • Huguette Pinto-Alphandary
  • Annette Gulik
  • Patrick Couvreur
Article

Abstract

Purpose. The goal of the present paper was to encapsulateoligonucleotides in a new particulate carrier in order to protect them fromenzymatic degradation.

Methods. Nanocapsules with an aqueous core containingoligonucleotides were prepared by interfacial polymerization ofisobutylcyanoacry late in a W/O emulsion. Ultracentrifugation and re-suspensionin water yielded a dispersion of these containing an aqueous core nanocapsules.Zeta potential measurements and quenching of fluorescence offluorescein-bounded oligonucleotides were used to study the localization ofthe oligonucleotides. Oligonucleotide degradation studies were carriedout in fetal calf serum.

Results. Polydisperse nanocapsules of size ranging from 20 to 400 nmwere obtained. Oligonucleotide loading did not significantly influencethe zeta potential, suggesting they were located within the core of thenanocapsules. Fluorescence quenching assays confirmed thislocalization. When encapsulated in the nanocapsules and incubated in thepresence of serum, the oligonucleotides were efficiently protected fromdegradation by nucleases, whereas oligonucleotides adsorbed ontonanospheres were protected less efficiently.

Conclusions. This paper describes, for the first time, ananotechnologyable to encapsulate oligonucleotides rather than adsorbing them at thesurface of a solid support. Such a formulation has great potential foroligonucleotide delivery.

nanoparticles nanocapsules nanospheres polyisobutylcyanoacrylate oligonucleotides antisense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. Guinot and J. Temsamani. Antisense oligonucleotides: a new therapeutic approach. Pathol. Biol. (Paris) 46:347–54 (1998).Google Scholar
  2. 2.
    N. Dean, R. McKay, L. Miraglia, R. Howard, S. Cooper, J. Giddings, P. Nicklin, L. Meister, R. Ziel, T. Geiger, M. Muller, and D. Fabbro. Inhibition of growth of human tumor cell lines in nude mice by an antisense of oligonucleotide inhibitor of protein kinase C-alpha expression. Cancer Res. 56:3499–3507 (1996).Google Scholar
  3. 3.
    T. Geiger, M. Muller, N. M. Dean, and D. Fabbro. Antitumor activity of a PKC-alpha antisense oligonucleotide in combination with standard chemotherapeutic agents against various human tumors transplanted into nude mice. Anticancer Drug Des. 13: 35–45 (1998).Google Scholar
  4. 4.
    K. Yamaguchi, B. Papp, D. Zhang, A. N. Ali, S. Agrawal, and R. A. Byrn. The multiple inhibitory mechanisms of GEM 91, a gag antisense phosphorothioate oligonucleotide, for human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses 13:545–554 (1997).Google Scholar
  5. 5.
    Y. S. Lee, A. A. Dlugosz, R. McKay, N. M. Dean, and S. H. Yuspa. Definition by specific antisense oligonucleotides of a role for protein kinase C alpha in expression of differentiation markers in normal and neoplastic mouse epidermal keratinocytes. Mol. Carninog. 18:44–53 (1997).Google Scholar
  6. 6.
    R. L. Juliano, S. Alahari, H. Yoo, R. Kole, and M. Cho. Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides. Pharm. Res. 16:494–502 (1999).Google Scholar
  7. 7.
    A. De Mesmaeker, K. H. Altmann, A. Waldner, and S. Wendeborn. Backbone modifications in oligonucleotides and peptide nucleic acid systems. Curr. Opin. Struct. Biol. 5:343–355 (1995).Google Scholar
  8. 8.
    A. M. Krieg and C. A. Stein. Phosphorothioate oligodeoxynucleotides: antisense or anti-protein? Antisense Res. Dev. 5:241 (1995).Google Scholar
  9. 9.
    C. A. Stein. Phosphorothioate antisense oligodeoxynucleotides: questions of specificity. Biotechnol. 14:47–149 (1996).Google Scholar
  10. 10.
    L. E. Black, J. G. Farrelly, J. A. Cavagnaro, C. H. Ahn, J. J. DeGeorge, A. S. Taylor, A. F. DeFelice and A. Jordan. Regulatory considerations for oligonucleotide drugs: updated recommendations for pharmacology and toxicology studies. Antisense Res. Dev. 4:299–301 (1994).Google Scholar
  11. 11.
    D. K. Monteith and A. A. Levin. Synthetic oligonucleotides: the development of antisense therapeutics. Toxicol. Pathol. 27: 8–13 (1999).Google Scholar
  12. 12.
    E. Fattal, C. Vauthier, I. Aynie, Y. Nakada, G. Lambert, C. Malvy, and P. Couvreur. Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J. Contr. Rel. 53:137–43 (1998).Google Scholar
  13. 13.
    I. Aynie, C. Vauthier, H. Chacun, E. Fattal, and P. Couvreur. Spongelike alginate nanoparticles as a new potential system for the delivery of antisense oligonucleotides. Antisense Nucleic Acid Drug Dev. 9:301–12 (1999).Google Scholar
  14. 14.
    C. Chavany, T. Le Doan, P. Couvreur, F. Puisieux, and C. Helene. Polyalkylcyanoacrylate nanoparticles as polymeric carriers for antisense oligonucleotides. Pharm. Res. 9:441–449 (1992).Google Scholar
  15. 15.
    Y. Nakada, E. Fattal, M. Foulquier, and P. Couvreur. Pharmacokinetics and biodistribution of oligonucleotide adsorbed onto poly(isobutylcyanoacrylate) nanoparticles after intravenous administration in mice. Pharm. Res. 13:38–43 (1996).Google Scholar
  16. 16.
    F. Ganachaud, A. Elaissari, C. Pichot, A. Laayoun, and P. Cros. Adsorption of single-strand DNA fragments onto cationic aminated latex particles. Langmuir 13:701–707 (1997).Google Scholar
  17. 17.
    H. Fessi, F. Puisieux, J. P. Devissaguet, N. Ammoury, and S. Benita. Nanocapsules formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 55:R1–R4 (1989).Google Scholar
  18. 18.
    D. Quintanar-Guerrero, E. Allemann, E. Doelker, and H. Fessi. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm. Res. 15:1056–62 (1998).Google Scholar
  19. 19.
    N. Al Khouri Fallouh, L. Roblot-Treupel, H. Fessi, J. P. Devissaguet, and F. Puisieux. Development of a new process for the manufacture of polyisobutylcyanoacrylate nanocapsules. Int. J. Pharm. 28:125–132 (1986).Google Scholar
  20. 20.
    H. Vranckx, M. Demoustier, and M. Deleers. A New Nanocapsule Formulation with Hydrophilic Core: Application to the Oral Administration of Salmon Calcitonin in Rats. Eur. J. Pharm. Biopharm. 42:345–347 (1996).Google Scholar
  21. 21.
    I. Aynie, C. Vauthier, M. Foulquier, C. Malvy, E. Fattal, and P. Couvreur. Development of a quantitative polyacrylamide gel electrophoresis analysis using a multichannel radioactivity counter for the evaluation of oligonucleotide-bound drug carrier. Anal. Biochem. 240:202–209 (1996).Google Scholar
  22. 22.
    G. Lambert, E. Fattal, A. Brehier, J. Feger, and P. Couvreur. Effect of polyisobutylcyanoacrylate nanoparticles and lipofectin loaded with oligonucleotides on cell viability and PKC alpha neosynthesis in HepG2 cells. Biochimie 80:969–76 (1998).Google Scholar
  23. 23.
    S. S. Lehrer. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–63 (1971).Google Scholar
  24. 24.
    R. M. Watt and E. W. Voss, Jr. Solvent perturbation of the fluorescence of fluorescein bound to specific antibody. Fluorescence quenching of the bound fluorophore by iodide. J. Biol. Chem. 254:1684–90 (1979).Google Scholar
  25. 25.
    R. H. Muller, C. Lherm, J. Herbort, and P. Couvreur. In vitro model for the degradation of alkylcyanoacrylate nanoparticles. Biomaterials 11:590–595 (1990).Google Scholar
  26. 26.
    V. Lenaerts, P. Couvreur, D. Christiaens-Leyh, E. Joiris, M. Roland, B. Rollman, and P. Speiser. Degradation of poly (isobutyl cyanoacrylate) nanoparticles. Biomaterials 5:65–68 (1984).Google Scholar
  27. 27.
    C. Chavany, T. Saison-Behmoaras, T. Le Doan, F. Puisieux, P. Couvreur, and C. Helene. Adsorption of oligonucleotides onto polyisohexylcyanoacrylate nanoparticles protects them against nucleases and increases their cellular uptake. Pharm. Res. 11:1370–1378 (1994).Google Scholar
  28. 28.
    G. Schwab, C. Chavany, I. Duroux, G. Goubin, J. Lebeau, C. Helene, and T. Saison-Behmoaras. Antisense oligonucleotides adsorbed to polyalkylcyanoacrylate nanoparticles specifically inhibit mutated Ha-ras-mediated cell proliferation and tumorigenicity in nude mice. Proc. Natl. Acad. Sci. U.S.A. 91:10460–10464 (1994).Google Scholar
  29. 29.
    R. Chakraborty, D. Dasgupta, S. Adhya, and M. K. Basu. Cationic liposome-encapsulated antisense oligonucleotide mediates efficient killing of intracellular Leishmania. Biochem. J. 340: 393–6 (1999).Google Scholar
  30. 30.
    P. Couvreur, B. Kante, M. Roland, and P. Speiser. Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J. Pharm. Sci. 68:1521–1524 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Gregory Lambert
    • 1
  • Elias Fattal
    • 1
  • Huguette Pinto-Alphandary
    • 1
  • Annette Gulik
    • 2
  • Patrick Couvreur
    • 1
  1. 1.Laboratoire de Physico-chimie, Pharmacotechnie et BiopharmacieUMR CNRS 8612, Faculté de PharmacieCháftenay-MalabryFrance
  2. 2.Centre de Geénétique MoléculaireCNRSGif sur YvetteFrance

Personalised recommendations