Advertisement

International Journal of Fracture

, Volume 94, Issue 1, pp 89–101 | Cite as

Dual boundary element method for three-dimensional thermoelastic crack problems

  • D.N. Dell'Erba
  • M.H. Aliabadi
  • D.P. Rooke
Article

Abstract

This paper describes the formulation and numerical implementation of the three-dimensional dual boundary element method (DBEM) for the thermoelastic analysis of mixed-mode crack problems in linear elastic fracture mechanics. The DBEM incorporates two pairs of independent boundary integral equations; namely the temperature and displacement, and the flux and traction equations. In this technique, one pair is applied on one of the crack faces and the other pair on the opposite one. On non-crack boundaries, the temperature and displacement equations are applied.

Fracture mechanics stress intensity factors boundary integral equation method. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliabadi, M.H. and Rooke, D.P. (1992). Numerical Fracture Mechanics, Computational Mechanic Publications, Southampton.Google Scholar
  2. Boley, B.A. and Weiner, J.H. (1960). Theory of Thermal Stresses, John Wiley & Sons, New York.zbMATHGoogle Scholar
  3. Brebbia, C.A. and Dominguez, J. (1992). Boundary Elements, An Introductory Course, Computational Mechanic Publications and McGraw–Hill.Google Scholar
  4. Brebbia, C.A., Telles, J.C.F. and Wrobel, L.C. (1984). Boundary Element Techniques, Springer–Verlag, Berlin.zbMATHGoogle Scholar
  5. Broek, D. (1987). Elementary Engineering Fracture Mechanics, Kluwer Academic Publishers, Dordrecht.zbMATHGoogle Scholar
  6. Cruse, T.A. (1977). Mathematical formulations of the boundary integral equation method in solid mechanics. Technical Report AFOSR–TR–77–1002. Pratt and Whitney Aircraft Group.Google Scholar
  7. Das, B.R. (1968). Thermal stresses in a long cylinder containing a penny–shaped crack. International Journal of Engineering Science 6, 497–516.zbMATHCrossRefGoogle Scholar
  8. Florence, A.L. and Goodier, J.N. (1963). The linear thermoelastic problem of uniform heat flow disturbed by a penny–shaped insulated crack. International Journal of Engineering Science 1, 533–540.MathSciNetCrossRefGoogle Scholar
  9. Mi, Y. and Aliabadi, M.H. (1992). Dual boundary element method for three–dimensional fracture mechanics analysis. Engineering Analysis with Boundary Elements 10, 161–171.CrossRefGoogle Scholar
  10. Murakami, Y. et al. (1987). Stress Intensity Factors Handbook, Pergamon Press, London.Google Scholar
  11. Olesiak, Z. and Sneddon, I.N. (1959). The distribution of therml stress in an infinite elastic solid containing a penny–shaped crack. Archive for Rational Mechanics and Analysis 4, 238–254.MathSciNetCrossRefADSGoogle Scholar
  12. Portela, A., Aliabadi, M.H. and Rooke, D.P. (1992). The dual boundary element method: Effective implementation for crack problems. International Journal for Numerical Methods in Engineering 33, 1269–1278.zbMATHCrossRefGoogle Scholar
  13. Prasad, N.N.V., Aliabadi, M.H. and Rooke, D.P. (1994). The dual boundary element method for thermoelastic crack problem. International Journal of Fracture 66, 255–272.CrossRefADSGoogle Scholar
  14. Rizzo, F.J. and Shippy, D.J. (1977). An advanced boundary integral equation method for three–dimensional thermoelasticity. International Journal for Numerical Methods in Engineering 11, 1753–1768.zbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • D.N. Dell'Erba
    • 1
  • M.H. Aliabadi
    • 2
  • D.P. Rooke
    • 3
  1. 1.Wessex Institute of Technology, AshurstSouthamptonU.K
  2. 2.Queen Mary CollegeUniversity of LondonU.K
  3. 3.DERAFarnboroughU.K

Personalised recommendations