Advertisement

Letters in Mathematical Physics

, Volume 48, Issue 1, pp 73–84 | Cite as

General Relativity, Strings, and Mathematical Physics

  • Massimo Porrati
Article

Abstract

We give a historical review of some aspects of string theory relevant to our present understanding of General Relativity, and connected with Einstein's unification program. We also point out to various mathematical fallouts of string theory.

unified theory superstrings supersymmetry duality M-theory holography conformal De Sitter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pais, A.: Subtle is the Lord: The Science and the Life of Albert Einstein, Oxford Univ. Press, Oxford, 1982.Google Scholar
  2. 2.
    Bell, J. S.: Physics (Long Island City, NY) 1 (1964), 195; Rev. Modern Phys. 38 (1966), 447.Google Scholar
  3. 3.
    Freed, D. S. and Ulenbeck, K. K.: Instantons and Four-Manifolds, Springer-Verlag, Berlin, 1991.Google Scholar
  4. 4.
    Cornwall, J. M., Levin, D. N. and Tiktopoulos, G.: Phys. Rev. D 10 (1974), 1145, Erratum ibid. 11 (1975), 972.Google Scholar
  5. 5.
    Scherk, J. and Schwarz, J. H.: Phys. Lett. B 52 (1974), 347.Google Scholar
  6. 6.
    For a review of these and other properties of perturbative string theory, see J.H. Schwarz: Phys. Rep. 89 (1982), 223; Green, M. B., Schwarz, J. H. and Witten, E.: Superstring Theory I, II, Cambridge Univ. Press, Cambridge, 1987.Google Scholar
  7. 7.
    Kac, V. G.: Funct. Anal. Appl. 1 (1967), 328; Moody, R. V.: Bull. Amer. Math. Soc. 73 (1967), 217; Bardakci, K. and Halpern, M. B.: Phys. Rev. D 3 (1971), 2493.Google Scholar
  8. 8.
    Duff, M. J., Nilsson, B. E. W. and Pope, C. N.: Phys. Rep. 130 (1986), 1.Google Scholar
  9. 9.
    Greene, B. and Yau, S. T. (eds): Mirror Symmetry I, II, Amer. Math. Soc., Providence, 1993, 1997.Google Scholar
  10. 10.
    Giveon, A., Porrati, M. and Rabinovici, E.: Phys. Rep. 244 (1994), 77 (hep-th/9401139).Google Scholar
  11. 11.
    Giannakis, I., Liu, J. T. and Porrati, M.: hep-th/9809142, to appear in Phys. Rev. D. Google Scholar
  12. 12.
    Flato, M., Hillion, P. and Sternheimer, D.: C.R. Acad. Sci. Paris 264 (1967), 85; Flato, M. and Hillion, P.: Phys. Rev. D 1 (1970), 1667.Google Scholar
  13. 13.
    Girardello, L., Porrati, M. and Zaffaroni, A.: Nuclear Phys. B 505 (1997) 272 (hep-th/9704163).Google Scholar
  14. 14.
    Montonen, C. and Olive, D.: Phys. Lett. B 72 (1977), 117.Google Scholar
  15. 15.
    Seiberg, N. and Witten, E.: Nuclear Phys. B 426 (1994), 19; ibid. B 431 (1994), 484 (hep-th/9407087).Google Scholar
  16. 16.
    Olive, D. and Witten, E.: Phys. Lett. B 78 (1978), 97.Google Scholar
  17. 17.
    Witten, E.: hep-th/9411102.Google Scholar
  18. 18.
    Polchinski, J.: TASI Lectures on D-Branes, hep-th/9611050.Google Scholar
  19. 19.
    Witten, E.: Nuclear Phys. B 443 (1995), 85 (hep-th/9503124).Google Scholar
  20. 20.
    Banks, T., Fischler, W., Shenker, S. H. and Susskind, L.: Phys. Rev. D 55 (1997), 5112, (hep-th/9610043).Google Scholar
  21. 21.
    Bigatti, D. and Susskind, L.: Proc. of Cargèse 1997, Strings, Branes and Dualities, (hep-th/9712072).Google Scholar
  22. 22.
    Townsend, P. K.: Nuclear Phys. Proc. Suppl. 68 (1998), 11 (hep-th/9708034).Google Scholar
  23. 23.
    Nahm, W.: Nuclear Phys. B 135 (1978), 149.Google Scholar
  24. 24.
    Haag, R., Lopuszanski, J. T. and Sohnius, M.: Nuclear Phys. B 88 (1975), 257.Google Scholar
  25. 25.
    Coleman, S. and Mandula, J.: Phys. Rev. 159 (1967), 1251.Google Scholar
  26. 26.
    Flato, M. and Sternheimer, D.: Comm. Math. Phys. 12 (1969), 296.Google Scholar
  27. 27.
    't Hooft, G.: Dimensional reduction in quantum gravity, gr-qc/9310026; Susskind, L.: J. Math. Phys. 36 (1995), 6377–6396 (hep-th/9409089).Google Scholar
  28. 28.
    Maldacena, J.: Adv. Theoret. Math. Phys. 2 (1998), 231 (hep-th/9711200); Gubser, S. S., Klebanov, I. R. and Polyakov, A. M.: Phys. Lett. B 428 (1998), 105 (hep-th/9802109); Witten, E.: Adv. Theoret. Math. Phys. 2 (1998), 253 (hep-th/9802150).Google Scholar
  29. 29.
    Flato, M. and Fronsdal, C.: J. Math. Phys. 22 (1981), 1100; Angelopoulos, E., Flato, M., Fronsdal, C. and Sternheimer, D.: Phys. Rev. D 23 (1981), 1278; Flato, M. and Frønsdal, C.: Lett. Math. Phys. 44 (1998), 244 (hep-th/9803013); and for an overview: Flato, M., Frønsdal, C. and Sternheimer, D.: Lett. Math. Phys. 48 (1999), 109–119 (this issue; see also hep-th/9901043).Google Scholar
  30. 30.
    Flato, M. and Fronsdal, C.: J. Geom. Phys. 5 (1988), 37.Google Scholar
  31. 31.
    Witten, E.: Adv. Theoret. Math. Phys. 2 (1998), 505 (hep-th/9803131).Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Massimo Porrati
    • 1
  1. 1.Theory Division CERNGeneva 23Switzerland

Personalised recommendations