European Journal of Epidemiology

, Volume 15, Issue 1, pp 15–22 | Cite as

Spatial autocorrelation of cancer in Western Europe

  • Michael S. Rosenberg
  • Robert R. Sokal
  • Neal L. Oden
  • Donna DiGiovanni
Article

Abstract

We applied the techniques of spatial autocorrelation (SA) analysis to 40 cancer mortality distributions in Western Europe. One of the aims of these methods is to describe the scale over which spatial patterns of mortalities occur, which may provide suggestions concerning the agents bringing about the patterns. We analyzed 355 registration areas, applying one- and two-dimensional SA as well as local SA techniques. We find that cancer mortalities are unusually strongly spatially structured, implying similar spatial structuring of the responsible agents. The small number of spatial patterns (4 or 5) in the 40 cancer mortalities suggests there are fewer spatially patterned agents than the number of cancers studied. SA present in variables will bias the results of conventional statistical tests applied to them. After correcting for such bias, some pairwise correlations of cancer mortality distributions remain significant, suggesting inherent, epidemiologically meaningful correlations. Local SA is a useful technique for exploring epidemiological maps. It found homogeneous high overall cancer mortalities in Denmark and homogeneous low mortalities in southern Italy, as well as a very heterogeneous pattern for ovarian cancer in Ireland.

Cancer mortalities Europe Spatial autocorrelation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sokal RR, Smouse PE, Neel JV. The genetic structure of a tribal population, the Yanomama Indians XV. Patterns inferred by autocorrelation analysis. Genetics 1986; 114: 259–287.Google Scholar
  2. 2.
    Sokal RR, Oden NL, Barker JSF. Spatial structure in Drosophila buzzatii populations: Simple and directional spatial autocorrelation. Am Nat 1987; 129: 122–142.Google Scholar
  3. 3.
    Epperson BK. Spatial patterns of genetic variation within plant populations. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds), Population genetics and germ plasma resources in crop development. Sunderland, MA: Sinauer Associates, 1990: 229–253.Google Scholar
  4. 4.
    Epperson BK. Spatial Structure of genetic variation within populations of forest trees. New Forests 1992; 6: 257–278.Google Scholar
  5. 5.
    Barbujani G, Sokal RR. Genetic population structure of Italy. I. Geographic patterns of gene frequencies. Hum Biol 1991; 63: 253–272.Google Scholar
  6. 6.
    Falsetti AB, Sokal RR. Genetic structure of human populations of the British Isles. Ann Hum Biol 1993; 20: 215–229.Google Scholar
  7. 7.
    Setzer RW. Spatio-temporal patterns of mortality in Pemphigus populicaulis and P.populitransversus on cottonwoods. Oecologia 1985; 67: 310–321.Google Scholar
  8. 8.
    Jones, JS, Selander RK, Schnell GD. Patterns of morphological and molecular polymorphism in the land snail Cepaea nemoralis. Biol J Linn Soc 1980; 14: 359–387.Google Scholar
  9. 9.
    Caugant D, Jones JS, Selander RK. Morphological and molecular polymorphism in Cepaea nemoralis in the Spanish Pyrenees. Genetica 1982; 57: 177–191.Google Scholar
  10. 10.
    Epperson BK, Clegg MT. Spatial-autocorrelation analysis of flower color polymorphisms within substructured populations of morning glory (Ipomoea purpurea). Am Nat 1986; 128: 840–858.Google Scholar
  11. 11.
    Sokal RR, Uytterschaut H. Cranial variation in European populations: A spatial autocorrelation study at three time periods. Am J Phys Anthro 1987; 74: 21–38.Google Scholar
  12. 12.
    Higginson J, Muir CS, Muñoz N. Human cancer: Epidemiology and environmental causes. Cambridge University Press, 1992.Google Scholar
  13. 13.
    Mehnert WH, Smans M, Muir CS, Möhner M, Schön D. Atlas of Cancer Incidence in the Former German Democratic Republic 1978–1982. Lyon: IARC Scientific Publications No. 106, 1992.Google Scholar
  14. 14.
    Smans M, Muir CS, Boyle P. Atlas of Cancer Mortality in the European Economic Community. Lyon: IARC Scientific Publications No. 107, 1992.Google Scholar
  15. 15.
    Zatonski W, Smans M, Tycynski J, Boyle P. Atlas of Cancer Mortality in Central Europe. Lyon: IARC Scientific Publications No. 134, 1996.Google Scholar
  16. 16.
    Clifford P, Richardson S, Hémon D. Assessing the significance of the correlation between two spatial processes. Biometrics 1989; 45: 123–134.Google Scholar
  17. 17.
    Sokal RR, Oden NL. Spatial autocorrelation in biology I: Methodology. Biol J Linn Soc 1978a; 10: 199–208.Google Scholar
  18. 18.
    Cliff AD, Ord JK. Spatial Processes. London: Pion, 1981.Google Scholar
  19. 19.
    Sokal RR, Oden NL. Spatial autocorrelation in biology II: Some biological implications and four applications of evolutionary and ecological interest. Biol J Linn Soc 1978b; 10: 229–249.Google Scholar
  20. 20.
    Sokal RR. Ecological parameters inferred from spatial correlograms. In: Patil GP, Rosenzweig ML (eds), Contemporary quantitative ecology and related ecometrics. Fairland, MD: International Co-operative Publishing House, 1979: 167–196.Google Scholar
  21. 21.
    Upton GJG, Fingleton B. Spatial data analysis by example. Vol 1: Point pattern and quantitative data. New York: John Wiley, 1985.Google Scholar
  22. 22.
    Wartenberg DE. SAAP — A spatial autocorrelation analysis program. Setauket, New York: Exeter Software 1989.Google Scholar
  23. 23.
    Oden NL. Assessing the significance of a special correlogram. Geog Anal 1984; 16: 1–16.Google Scholar
  24. 24.
    Späth H. Cluster-Formation und-Analyse. Munich: R. Oldenbourg Verlag, 1980.Google Scholar
  25. 25.
    Oden NL, Sokal RR. Directional autocorrelation: An extension of spatial correlograms in two dimensions. Sys Zool 1986; 35: 608–617.Google Scholar
  26. 26.
    Hubert L, Arabie P. Comparing partitions. J Class 1985; 2: 193–218.Google Scholar
  27. 27.
    Getis A, Ord JK. The analysis of spatial association by use of distance statistics. Geog Anal 1992; 24: 189–206.Google Scholar
  28. 28.
    Anselin L. Local indicators of spatial association — LISA. Geog Anal 1995; 27: 93–115.Google Scholar
  29. 29.
    Tiefelsdorf M, Boots B. A note on the extremities of local Moran's I is and their impact on global Moran's I. Geog Anal 1997; 29: 248–257.Google Scholar
  30. 30.
    Sokal RR, Oden NL, Thomson BA. Local spatial autocorrelation in a biological model. Geog Anal 1998a; 30: 331–354.Google Scholar
  31. 31.
    Sokal RR, Oden NL, Thomson BA. Local spatial autocorrelation in biological variables. Bio J Linn Soc 1998b; 65: 41–62.Google Scholar
  32. 32.
    Sokal RR, Oden NL, Rosenberg MS, DiGiovanni D. Ethnohistory, genetics and cancer mortality in Europeans. Proc Nat Acad Sci USA 1997; 94: 12728–12731.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Michael S. Rosenberg
    • 1
  • Robert R. Sokal
    • 1
  • Neal L. Oden
    • 2
  • Donna DiGiovanni
    • 3
  1. 1.Department of Ecology and EvolutionState University of New York at Stony BrookStony BrookUSA
  2. 2.The EMMES CorporationPotomacUSA
  3. 3.Department of NeurologyState University of New York at Stony BrookStony BrookUSA

Personalised recommendations