Advertisement

Letters in Mathematical Physics

, Volume 48, Issue 1, pp 35–72 | Cite as

Operads and Motives in Deformation Quantization

  • Maxim Kontsevich
Article

Abstract

The algebraic world of associative algebras has many deep connections with the geometric world of two-dimensional surfaces. Recently, D. Tamarkin discovered that the operad of chains of the little discs operad is formal, i.e. it is homotopy equivalent to its cohomology. From this fact and from Deligne's conjecture on Hochschild complexes follows almost immediately my formality result in deformation quantization. I review the situation as it looks now. Also I conjecture that the motivic Galois group acts on deformation quantizations, and speculate on possible relations of higher-dimensional algebras and of motives to quantum field theories.

deformation quantization Hochschild cohomology little discs operads motives quantum field theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and Sternheimer, D.: Deformation theory and quantization. I. Deformations of symplectic structures, Ann. Phys. 111(1) (1978), 61–110.Google Scholar
  2. 2.
    Boardmann, J. M. and Vogt, R. M.: Homotopy Invariant Algebraic Structures onTopological Spaces, Lecture Notes in Math. 347, Springer-Verlag, Berlin, 1973.Google Scholar
  3. 3.
    Broadhurst, D. J. and Kreimer, D.: Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, hep-th/9609128.Google Scholar
  4. 4.
    Cattaneo, A. and Felder, G.: A path integral approach to the Kontsevich quantization formula, math/9902090.Google Scholar
  5. 5.
    Cohen, F. R.: The homology of Cn+1-spaces, n ≥ 0, The homology of iterated loop spaces, Lecture Notes in Math. 533, Springer-Verlag, Berlin, 1976. pp. 207–351.Google Scholar
  6. 6.
    Connes, A. and Kreimer, D.: Lessons from Quantum Field Theory, Lett. Math. Phys. 48 (1999), 85–96 (this issue).Google Scholar
  7. 7.
    Deligne, P., Griffiths, Ph., Morgan, J. and Sullivan, D.: Real homotopy theory of Kähler manifolds, Invent. Math 29 (1975), 245–274.Google Scholar
  8. 8.
    Drinfeld, V. G.: On quasi-triangular Quasi-Hopf algebras and a group closely related with Gal(\(\overline {\mathbb{Q}}\)/ℚ), Leningrad Math. J. 2 (1991), 829–860.Google Scholar
  9. 9.
    Etingof, P. and Kazhdan, D.: Quantization of Lie Bialgebras, I, Selecta Math. (N.S.) 2(1) (1996), 1–41.Google Scholar
  10. 10.
    Flato, M., Frønsdal, C. and Sternheimer, D.: Singletons, physics in AdS universe and oscillations of composite neutrinos, Lett. Math. Phys. 48 (1999), 109–119 (this issue).Google Scholar
  11. 11.
    Fulton, W. and MacPherson, R.: Compactification of configuration spaces, Ann. Math. 139 (1994), 183–225.Google Scholar
  12. 12.
    Gerstenhaber, M. and Voronov, A.: Homotopy G-algebras and moduli space operad, Intern. Math. Res. Notices (1995), No. 3, 141–153.Google Scholar
  13. 13.
    Getzler, E. and Jones, J. D. S.: Operads, homotopy algebra and iterated integrals for double loop spaces, hep-th/9403055.Google Scholar
  14. 14.
    Ginzburg, V. and Kapranov, M.: Koszul duality for operads, Duke Math. J. 76(1) (1994), 203–272.Google Scholar
  15. 15.
    Kontsevich, M.: Deformation quantization of Poisson manifolds, I, math/9709180.Google Scholar
  16. 16.
    Kontsevich, M.: Feynman diagrams and low-dimensional topology, in: First European Congr. of Math. (Paris, 1992), Vol. II, Progr. Math. 120, Birkhäuser, Basel, 1994, pp. 97–121.Google Scholar
  17. 17.
    MacLane, S.: Categories forWorking Mathematician, Springer-Verlag, Berlin, 1988.Google Scholar
  18. 18.
    May, J. P.: Infinite loop space theory, Bull. Amer. Math. Soc. 83(4) (1977), 456–494.Google Scholar
  19. 19.
    McClure, J. and Smith, J.: Little 2-cubes and Hochschild cohomology, preliminary announcement.Google Scholar
  20. 20.
    Nekovář, J.: Beilinson's conjectures, in: U. Jannsen, S. Kleiman, J. P. Serre (eds), Motives, Proc. Sympos. Pure Math. 55 (1), Amer. Math. Soc., Providence, 1994, pp. 537–570.Google Scholar
  21. 21.
    Nori, M.: private communication.Google Scholar
  22. 22.
    Quillen, D.: Homotopical Algebra, Lecture Notes in Math., Springer-Verlag, Berlin, 1967.Google Scholar
  23. 23.
    Serre, J.-P.: Propriétés conjecturales des groups de Galois motiviques et des représentations l-adiques, in: U. Jannsen, S. Kleiman, J.-P. Serre (eds), Motives, Proc. Sympos. Pure Math. 55 (1), Amer. Math. Soc., Providence, 1994, pp. 377–400.Google Scholar
  24. 24.
    Tamarkin, D.: Another proof of M. Kontsevich formality theorem, math/9803025.Google Scholar
  25. 25.
    Tamarkin, D.: Formality of chain operad of small squares, math/9809164.Google Scholar
  26. 26.
    Voronov, A.: The Swiss-cheese operad, math/9807037.Google Scholar
  27. 27.
    Zagier, D.: Values of zeta functions and their applications, in: First European Congr. Math. (Paris, 1992),Vol. II, Progr. Math. 120, Birkhäuser, Basel, 1994, pp. 497–512.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Maxim Kontsevich
    • 1
  1. 1.IHÉSBures-sur-YvetteFrance

Personalised recommendations