Pharmaceutical Research

, Volume 17, Issue 2, pp 113–126 | Cite as

Cationic Polymer Based Gene Delivery Systems

  • Stefaan C. De Smedt
  • Joseph Demeester
  • Wim E. Hennink


Gene transfer to humans requires carriers for the plasmid DNA which canefficiently and safely carrythe gene into the nucleus of the desired cells. A series of chemically differentcationic polymers arecurrently being investigated for these purposes. Although many cationic polymersindeed condense DNAspontaneously, which is a requirement for gene transfer in most types of cells,the physicochemical andbiopharmaceutical behavior of the current generation of polyplexes severelylimits an efficient genetransfer in vitro and especially in vivo. This papersummarizes recent physicochemical and biologicalinformation on polyplexes and aims to provide new insights with respect to thistype of gene deliverysystem. Firstly, the chemical structure of frequently studied cationic polymersis represented. Secondly,the parameters influencing condensation of DNA by cationic polymers aredescribed. Thirdly, the surfaceproperties, solubility, aggregration behavior, degradation and dissociation ofpolyplexes are considered.The review ends by describing the in vitro and in vivo genetransfection behavior of polyplexes.

cationic polymers polycations DNA plasmid non-viral gene therapy gene carriers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Mumper, J. J. Wang, S. L. Klakamp, H. Nitta, K. Anwer, F. Tagliaferri, and A. P. Rolland. Protective interactive noncon-densing (PINC) polymers for enhanced plasmid distribution and expression in rat skeletal muscle. J. Contr. Rel. 52:191-203 (1998).Google Scholar
  2. 2.
    A. Maruyama, T. Ishihara, J. S. Kim, S. W. Kim, and T. Akaike. Nanoparticle DNAcarrier with poly(L-lysine) grafted polysaccharide copolymer and poly(D,L-lactic acid). Bioconjug. Chem. 8:735-742 (1997).Google Scholar
  3. 3.
    P. L. Felgner, Y. Barenholz, J. P. Behr, S. H. Cheng, P. Cullis, L. Huang, J. A. Jessee, L. Seymour, F. Szoka, A. R. Thierry, E. Wagner, and G. Wu. Nomenclature for synthetic gene delivery systems. Hum. Gene Ther. 8:511-512 (1997).Google Scholar
  4. 4.
    J. E. Duncan, J. A. Whitsett, and A. D. Horowitz. Pulmonary surfactant inhibits cationic liposome-mediated gene delivery to respiratory epithelial cells in vitro. Hum. Gene Ther. 8:431-438 (1997).Google Scholar
  5. 5.
    N. Ernst, S. Ulrichskötter, W. A. Schmalix, J. Rädler, R. Galneder, E. Mayer, S. Gersting, C. Plank, D. Reinhardt, and J. Rosenacker. Interaction of liposomal and polycationic transfection complexes with pulmonray surfactant. J. Gen. Med. Preprint 1: in press (1999).Google Scholar
  6. 6.
    P. L. Felgner. Non viral strategies for gene therapy. Sci. Am. 276:102-106 (1997).Google Scholar
  7. 7.
    E. Tomlinson and A. P. Rolland. Controllable gene therapy- pharmaceutics of non-viral gene delivery systems. J. Contr. Rel. 39:357-372 (1996).Google Scholar
  8. 8.
    F. D. Ledley. Pharmaceutical approach to somatic gene therapy. Pharm. Res. 13:1595-1614 (1996).Google Scholar
  9. 9.
    J. S. Remy, B. Abdallah, M. A. Zanta, O. Boussif, J. P. Behr, and B. Demeneix. Gene transfer with lipospermines and polyethylene-imines. Adv. Drug Deliv. Rev. 30:85-95 (1998).Google Scholar
  10. 10.
    W. Zauner, M. Ogris, and E. Wagner. Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv. Drug Del. Rev. 30:97-113 (1998).Google Scholar
  11. 11.
    T. Takai and H. Ohmori. DNA transfection of mouse lymphoid-cells by the combination of DEAE-dextran-mediated DNA uptake and osmotic shock procedure. Biochim. Biophys. Acta 1048:105-109 (1990).Google Scholar
  12. 12.
    G. Y. Wu and C. H. Wu. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem. 4429-4432 (1987).Google Scholar
  13. 13.
    L. C. Smith, J. Duguid, M. S. Wadhwa, M. J. Logan, C. H. Tung, V. Edwards, and J. T. Sparrow. Synthetic peptide-based DNA complexes for nonviral gene delivery. Adv. Drug Del. Rev. 30:115-131 (1998).Google Scholar
  14. 14.
    J. G. Duguid, C. Li, M. Shi, M. J. Logan, H. Alila, A. Rolland, E. Tomlinson, J. T. Sparrow, and L. C. Smith. A physicochemical approach for predicting the effectiveness of peptide-based gene delivery systems for use in plasmid-based gene therapy. Biophys. J. 74:2802-2814 (1998).Google Scholar
  15. 15.
    A. V. Kabanov and V. A. Kabanov. Interpolyelectrolyte and block ionomer complexes for gene delivery: physicochemical aspects. Adv. Drug Del. Rev. 30:49-60 (1998).Google Scholar
  16. 16.
    M. A. Wolfert, E. H. Schacht, V. Toncheva, K. Ulbrich, O. Nazarova, and L. W. Seymour. Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block co-polymers. Hum. Gene Ther. 7:2123-2133 (1996).Google Scholar
  17. 17.
    V. Toncheva, M. A. Wolfert, P. R. Dash, D. Oupicky, K. Ulbrich, L. W. Seymour, and E. H. Schacht. Novel Vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers. Biochim. Biophys. Acta Gen. Rev. 1380:354-368 (1998).Google Scholar
  18. 18.
    A. Maruyama, M. Katoh, T. Ishihara, and T. Akaike. Comb-type polycations effectively stabilize DNA triplex. Bioconjug. Chem. 8:3-6 (1997).Google Scholar
  19. 19.
    A. Maruyama, H. Watanabe, A. Ferdous, M. Katoh, T. Ishihara, and T. Akaike. Characterization of interpolyelectrolyte complexes between double-stranded DNA and polylysine comb-type copolymers having hydrophilic side chains. Bioconjug. Chem. 9:292-299 (1998).Google Scholar
  20. 20.
    S. Katayose and K. Kataoka. Water-soluble polyion complex associates of DNA and poly(ethylene glycol) poly(L-lysine) block copolymer. Bioconjug. Chem. 8:702-707 (1997).Google Scholar
  21. 21.
    S. Katayose and K. Kataoka. Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol) poly(L-lysine) block copolymer. J. Pharm. Sci. 87:160-163 (1998).Google Scholar
  22. 22.
    J. Haensler and F. C. J. Szoka. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 372-379 (1993).Google Scholar
  23. 23.
    O. Boussif, M. A. Zanta, and J. P. Behr. Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther. 3:1074-1080 (1996).Google Scholar
  24. 24.
    M. A. Zanta, O. Boussif, A. Adib, and J. P. Behr. In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjug. Chem. 8:839-844 (1997).Google Scholar
  25. 25.
    O. Boussif, F. Lezoualc'h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92:7297-7301 (1995).Google Scholar
  26. 26.
    S. Ferrari, E. Moro, A. Pettenazzo, J. P. Behr, F. Zacchello, and M. Scarpa. ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo. Gene Ther. 4:1100-1106 (1997).Google Scholar
  27. 27.
    J.-Y. Cherng, P. van de Wetering, H. Talsma, D. J. A. Crommelin, and W. E. Hennink. Effect of size and serum proteins on transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid nanoparticles. Pharm. Res. 13:1038-1042 (1996).Google Scholar
  28. 28.
    P. van de Wetering, J.-Y. Cherng, H. Talsma, and W. E. Hennink. Relation between transfection efficiency and cytotoxicity of poly(2-(dimethylamino)ethyl mathacrylate)/plasmid complexes. J. Cont. Rel. 49:59-69 (1997).Google Scholar
  29. 29.
    F. C. MacLaughlin, R. J. Mumper, J. Wang, F. Tagliaferri, I. Gill, M. Hinchcliffe, and A. Rolland. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J. Contr. Rel. 56:259-272 (1998).Google Scholar
  30. 30.
    G. Y. Wu and C. H. Wu. Evidence for targeted gene delivery to Hep G2 hepatoma cells in vitro. Biochemistry 27:887-892 (1988).Google Scholar
  31. 31.
    A. V. Kabanov and V. A. Kabanov. DNA complexes with polycations for the delivery of genetic material into cells. Bioconjug. 6:7-20 (1995).Google Scholar
  32. 32.
    A. Kichler, W. Zauner, C. Morrison, and E. Wagner. Ligand-polylysine mediated gene transfer. In P. L. Felgner, M. J. Heller, P. Lehn, J.-P. Behr, and F. C. Szoka, Jr. (eds.), Artificial Self-Systems for Gene Delivery, ACS, Washington, pp 120-128, 1996.Google Scholar
  33. 33.
    V. A. Bloomfield. Condensation of DNA by multivalent cations: considerations on mechanism. Biopolymers 31:1471-1481 (1991).Google Scholar
  34. 34.
    V. A. Bloomfield. DNA condensation. Curr. Opin. Struc. Biol. 6:334-341 (1996).Google Scholar
  35. 35.
    C. W. Pouton, P. Lucas, B. J. Thomas, A. N. Uduehi, D. A. Milroy, and S. H. Moss. Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids. J. Contr. Rel. 53:289-299 (1998).Google Scholar
  36. 36.
    S. Y. Park, D. Harries, and W. M. Gelbart. Topological defects and the optimum size of DNA condensates. Biophys. J. 75:714-720 (1998).Google Scholar
  37. 37.
    M. X. Tang and F. C. Szoka. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Therapy 4:823-832 (1997).Google Scholar
  38. 38.
    M. A. Wolfert and L. W. Seymour. Atomic force microscopic analysis of the influence of the molecular weight of poly(L)lysine on the size of polyelectrolyte complexes formed with DNA. Gene Ther. 3:269-273 (1996).Google Scholar
  39. 39.
    A. U. Bielinska, J. F. KukowskaLatallo, and J. R. Baker. The interaction of plasmid DNA with polyamidoamine dendrimers: mechanism of complex formation and analysis of alterations induced in nuclease sensitivity and transcriptional activity of the complexed DNA. Biochim. Biophys. Acta 1353:180-190 (1997).Google Scholar
  40. 40.
    J. Pelta, F. Livolant, and J. L. Sikorav. DNA aggregation induced by polyamines and cobalthexamine. J. Biol. Chem. 271:5656-5662 (1996).Google Scholar
  41. 41.
    J. S. Kim, A. Maruyama, T. Akaike, and S. W. Kim. Terplex DNA delivery system as a gene carrier. Pharm. Res. 15:116-121 (1998).Google Scholar
  42. 42.
    J.-Y. Cherng, N. M. E. Schuurmans-Nieuwenbroek, W. Jiskoot, H. Talsma, N. J. Zuidam, W. E. Hennink, and D. J. A. Crommelin. Effect of DNA topology on the transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid complexes. J. Contr. Rel. (1999, in press).Google Scholar
  43. 43.
    E. Wagner, M. Cotten, R. Foisner, and M. L. Birnstiel. Transferrin-4: polycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proc. Natl. Acad. Sci. USA 88:4255-4259 (1991).Google Scholar
  44. 44.
    R. C. Adami, W. T. Collard, S. A. Gupta, K. Y. Kwok, J. Bonadio, and K. G. Rice. Stability of peptide condensed plasmid DNA formulations. J. Pharm. Sci. 87:678-683 (1998).Google Scholar
  45. 45.
    R. J. Mumper, J. Wang, J. M. Claspell, and A. P. Rolland, A. P. (1995) Novel polymeric condensing carriers for gene delivery. Proc. Intern. Symp. Control. Rel. Bioact. Mater. 22:178-179 (1995).Google Scholar
  46. 46.
    P. G. Arscott and V. A. Bloomfield. Condensation of DNA by trivalent cations. 1. Effects of DNA length and topology on the size and shape of condensed particles. Biopolymers 30:619-630 (1990).Google Scholar
  47. 47.
    J. S. Kim, A. Maruyama, T. Akaike, and S. W. Kim. In vitro gene expression on smooth muscle cells using a terplex delivery system. J. Contr. Rel. 47:51-59 (1997).Google Scholar
  48. 48.
    J. C. Perales, G. A. Grossmann, M. Molas, G. Liu, T. Ferkol, J. Harpst, H. Oda, and R. W. Hanson. Biochemical and functional characterization of DNA complexes capable of targeting genes to hepatocytes via the asialoglycoprotein receptor. J Biol. Chem. 272:7398-7407 (1997).Google Scholar
  49. 49.
    C. Plank, K. Mechtler, F. C. Szoka, and E. Wagner. Activation of the complement system by synthetic DNA complexes: A potential barrier for intravenous gene delivery. Hum. Gene Ther. 7:1437-1446 (1996).Google Scholar
  50. 50.
    P. Erbacher, M. T. Bousser, J. Raimond, M. Monsigny, P. Midoux, and A. C. Roche. Gene transfer by DNA/glycosylated polylysine complexes into human blood monocyte-derived macrophages. Hum. Gene Ther. 7:721-729 (1996).Google Scholar
  51. 51.
    P. Erbacher, A. C. Roche, M. Monsigny, and P. Midoux. The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes. Biochim. Biophys. Acta Biomembr. 1324:27-36 (1997).Google Scholar
  52. 52.
    L. Bromberg and G. Levin. Conjugates of polylysine and oligo(N,N-diethylacrylamide) as temperature-sensitive agents in DNA condensation. Macromol. Rapid Comm. 19:79-82 (1998).Google Scholar
  53. 53.
    S. Asayama, A. Maruyama, C. S. Cho, and T. Akaike. Design of comb-type polyamine copolymers for a novel pH-sensitive DNA carrier. Bioconjug. Chem. 8:833-838 (1997).Google Scholar
  54. 54.
    P. van de Wetering, N. J. Zuidam, M. J. van Steenbergen, O. A. G. J. van der Houwen, W. J. M. Underberg, and W. E. Hennink. Amechanistic study of the hydrolytic stability of poly(2-(dimethy-lamino)ethyl methacrylate). Macromolecules 31:8063-8068 (1998).Google Scholar
  55. 55.
    I. R. Miller and D. Bach. Interaction of DNA with heavy metal ions and polybases. Biopolymers 6:169-179 (1968).Google Scholar
  56. 56.
    M. Ruponen, S. Yla-Herttuala, and A. Urtti. Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: physicochemical and transfection studies. Biochem. Biophys. Acta 1415:331-341 (1999).Google Scholar
  57. 57.
    V. A. Izumrudov, M. V. Zhiryakova, S. I. Kargov, A. B. Zezin, and V. A. Kabanov. Competitive reactions in solutions of DNA-containing polyelectrolyte complexes. Macromol. Symp. 106:179-192 (1996).Google Scholar
  58. 58.
    P. R. Dash, V. Toncheva, E. Schacht, and L. W. Seymour. Synthetic polymers for vectorial delivery of DNA: characterisation of polymer-DNA complexes by photon correlation spectroscopy and stability to nuclease degradation and disruption by polyanions in vitro. J. Contr. Rel. 48:269-276 (1997).Google Scholar
  59. 59.
    T. Wink, J. de Beer, P. J. H. J. van Oss, W. N. E. van Dijk-Wolthuis, N. J. Zuidam, W. E. Hennink, A. Bult, and W. P. van Bennekom. Interaction between plasmid DNA and cationic polymers studied with surface plasmon resonance spectrometry. Anal. Chem. 71:801-805 (1999).Google Scholar
  60. 60.
    J. P. Yang and L. Huang. Direct gene transfer to mouse melanoma by intratumor injection of free DNA. Gene Ther. 3:542-548 (1996).Google Scholar
  61. 61.
    M. Ogris, P. Steinlein, M. Kursa, K. Mechtler, R. Kircheis, and E. Wagner. The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther. 5:1425-1433 (1998).Google Scholar
  62. 62.
    M. R. Capecchi. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22:479-488 (1980).Google Scholar
  63. 63.
    B. Meyer, L. S. Uyechi, and F. C. J. Szoka. Manipulating the trafficking of nucleic acids. In K. L. Brigham (ed.), Gene Therapy for Diseases of the Lung, Marcel Dekker, New York, 1997, pp 135-180.Google Scholar
  64. 64.
    M. Wilke, E. Fortunati, M. van den broek, A. T. Hoogeveen, and B. J. Scholte. Efficacy of a peptide-based gene delivery system depends on mitotic activity. Gene Ther. 3:1133-1142 (1996).Google Scholar
  65. 65.
    K. Luby Phelps, P. E. Castle, D. L. Taylor, and F. Lanni. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc. Natl. Acad. Sci. USA 84:4910-4913 (1987).Google Scholar
  66. 66.
    E. A. Nigg. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386:779-787 (1997).Google Scholar
  67. 67.
    M. X. Tang, C. T. Redemann, and F. C. Szoka. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem. 7:703-714 (1996).Google Scholar
  68. 68.
    J. P. Behr. L' éponge àprotons: un moyen d'entrer dans une cellule auquel les virus n'ont pas pense´. Me´dicine/Sciences 12:56-59 (1996).Google Scholar
  69. 69.
    K. A. Mislick and J. D. Baldeschwieler. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc. Natl. Acad. Sci. USA 93:12349-12354 (1996).Google Scholar
  70. 70.
    A. A. Yaroslavov, S. A. Sukhishvili, O. L. Obolsky, E. G. Yaroslavova, A. V. Kabanov, and V. A. Kabanov. DNA affinity to biological membranes is enhanced due to complexation with hydrophobized polycation. FEBS lett. 384:177-180 (1996).Google Scholar
  71. 71.
    P. van de Wetering, J.-Y. Cherng, H. Talsma, D. J. A. Crommelin, and W. E. Hennink. 2-(Dimethylamino)ethyl methacrylate based (co)polymers as gene transfer agents. J. Contr. Rel. 53:145-153 (1998).Google Scholar
  72. 72.
    Y. H. Choi, F. Liu, J. S. Kim, Y. K. Choi, J. S. Park, and S. W. Kim. Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier. J. Contr. Rel. 54:39-48 (1998).Google Scholar
  73. 73.
    M. Yamazaki and T. Ito. Deformation and instability in membrane structure of phospholipid vesicles caused by osmophobic association: mechanical stress model for the mechanism of poly(ethylene glycol)-induced membrane fusion. Biochemistry 29:1309-1314 (1990).Google Scholar
  74. 74.
    N. Nelson. Structure and morphology of the proton-ATPases. Trends Pharmacol. Sci. 12:71-75 (1991).Google Scholar
  75. 75.
    P. O. Seglen. Inhibitors of lysosomal function. Methods Enzymol. 96:737-764 (1983).Google Scholar
  76. 76.
    P. Erbacher, A. C. Roche, M. Monsigny, and P. Midoux. Putative role of chloroquine in gene transfer into a human hepatoma cell line by DNA lactosylated polylysine complexes. Exp. Cell Res. 225:186-194 (1996).Google Scholar
  77. 77.
    D. T. Curiel, S. Agarwal, E. Wagner, and M. Cotten. Adenovirus enhancement of transferrin polylysine-mediated gene delivery. Proc. Natl. Acad. Sci. USA 88:8850-8854 (1991).Google Scholar
  78. 78.
    M. Cotten, E. Wagner, K. Zatloukal, S. Phillips, D. T. Curiel, and M. L. Birnstiel. High-efficiency receptor-mediated delivery of small and large (48 kilobase) gene constructs using the endosome-disruption activity of defective or chemically inactivated adenovirus particles. Proc. Natl. Acad. Sci. USA 89:6094-6098 (1992).Google Scholar
  79. 79.
    E. Wagner, K. Zatloukal, M. Cotten, H. Kirlappos, K. Mechtler, D. T. Curiel, and M. L. Birnstiel. Coupling of adenovirus to transferrin polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes. Proc. Natl. Acad. Sci. USA 89:6099-6103 (1992).Google Scholar
  80. 80.
    J. D. Lear and W. F. DeGrado. Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza HA2. J. Biol. Chem. 262:6500-6505 (1987).Google Scholar
  81. 81.
    C. Plank, B. Oberhauser, K. Mechtler, C. Koch, and E. Wagner. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J. Biol. Chem. 269:12918-12924 (1994).Google Scholar
  82. 82.
    W. Zauner, D. Blaas, E. Kuechler, and E. Wagner. Rhinovirus-mediated endosomal release of transfection complexes. J. Virol. 69:1085-1092 (1995).Google Scholar
  83. 83.
    A. F. Santos, N. Murthy, P. S. Stayton, O. W. Press, D. A. Tirell, and A. S. Hoffman. Design of polymers to increase the efficiency of endosomal release of drugs. J. Invest. Med. 46:91A-91A (1998).Google Scholar
  84. 84.
    J. L. Thomas, B. P. Devlin, and D. A. Tirrell. Kinetics of membrane micellization by the hydrophobic polyelectrolyte poly(2-ethyla-intracellular crylic acid). Biochim. Biophys. Acta Biomembr. 1278:73-78 (1996).Google Scholar
  85. 85.
    E. G. Marcusson, B. Bhat, M. Manoharan, C. F. Bennett, and N. M. Dean. Phosphorothioate oligodeoxyribonucleotides dissociate from cationic lipids before entering the nucleus. Nucleic Acids Res. 26:2016-2023 (1998).Google Scholar
  86. 86.
    G. Stingl, E. B. Brocker, R. Mertelsmann, K. Wolff, S. Schreiber, E. Kampgen, A. Schneeberger, W. Dummer, U. Brennscheid, H. Veelken, M. L. Birnstiel, K. Zatloukal, W. Schmidt, G. Maass, E. Wagner, M. Buschle, M. Giese, E. R. Kempe, H. A. Weber H A, and T. Voigt. Phase I study to the immunotherapy of metastatic malignant melanoma by a cancer vaccine consisting of autologous cancer cells transfected with the human IL-2 gene. Hum. Gene Ther. 7:551-563 (1996).Google Scholar
  87. 87.
    R. Kircheis, S. Schüller, S. Brunner, M. Ogris, K.-H. Heider, W. Zauner, and E. Wagner. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J. Gen. Med. Preprint d11-16 (1999).Google Scholar
  88. 88.
    G. Y. Wu and C. H. Wu. Receptor-mediated gene delivery and expression in vivo. J. Biol. Chem. 263:14621-14624 (1988).Google Scholar
  89. 89.
    N. R. Chowdhury, C. H. Wu, G. Y. Wu, V. R. Yerneni, V. R. Bommineni, and J. R. Chowdhury. Fate of DNA targeted to the liver by asialoglycoprotein receptor-mediated endocytosis in vivo. J. Biol. Chem. 68:2341-2346 (1993).Google Scholar
  90. 90.
    J. C. Perales, T. Ferkol, H. Beegen, O. D. Ratnoff, and R. W. Hanson. Gene transfer in vivo: sustained expression and regulation of genes introduced into the liver by receptor-targeted uptake. Proc. Natl. Acad. Sci. USA 91:4086-4090 (1994).Google Scholar
  91. 91.
    M. Hashida, S. Takemura, M. Nishikawa, and Y. Takakura. Targeted delivery of plasmid DNA complexed with galactosylated poly(L-Lysine). J. Contr. Rel. 53:301-310 (1998).Google Scholar
  92. 92.
    T. Ferkol, J. C. Perales, E. Eckman, C. S. Kaetzel, R. W. Hanson, and P. B. Davis. Gene transfer into the airway epithelium of animals by targeting the polymeric immunoglobulin receptor. J. Clin. Invest. 95:493-502 (1995).Google Scholar
  93. 93.
    B. Schwartz, C. Benoist, B. Abdallah, R. Rangara, A. Hassan, D. Scherman, and B. A. Demeneix. Gene transfer by naked DNA into adult mouse brain. Gene Ther. 3:405-411 (1996).Google Scholar
  94. 94.
    A. Boletta, A. Benigni, J. Lutz, G. Remuzzi, M. R. Soria, and L. Monaco. Nonviral gene delivery to the rat kidney with polyethy-lenimine. Hum. Gene Ther. 8:1243-1251 (1997).Google Scholar
  95. 95.
    L. H. Qin, D. R. Pahud, Y. Z. Ding, A. U. Bielinska, J. F. KukowskaLatallo, J. R. Baker, and J. S. Bromberg. Efficient transfer of genes into murine cardiac grafts by starburst polyamidoamine dendrimers. Hum. Gene Ther. 9:553-560 (1998).Google Scholar
  96. 96.
    S. Asayama, M. Nogawa, Y. Takei, T. Akaike, and A. Maruyama. Synthesis of novel polyampholyte comb-type copolymers consisting of a poly(L-lysine) backbone and hyaluronic acid side chains for a DNA carrier. Bioconjug. Chem. 9:476-481 (1998).Google Scholar
  97. 97.
    C. H. Wu, J. M. Wilson, and G. Y. Wu. Targeting genes: delivery and persistent expression of a foreign gene driven by mammalian regulatory elements in vivo. J. Biol. Chem. 264:16985-16987 (1989).Google Scholar
  98. 98.
    H. C. Chiou, M. V. Tangco, S. M. Levine, D. Robertson, K. Kormis, C. H. Wu, and G. Y. Wu. Enhanced resistance to nuclease degradation of nucleic acids complexed to asialoglycoprotein-polylysine carriers. Nucleic Acids Res. 22:5439-5446 (1994).Google Scholar
  99. 99.
    C. Plank, K. Zatloukal, M. Cotten, K. Mechtler, and E. Wagner. Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand. Bioconjug. Chem. 3:533-539 (1992).Google Scholar
  100. 100.
    P. Midoux, C. Mendes, A. Legrand, J. Raimond, R. Mayer, M. Monsigny, and A. C. Roche. Specific gene transfer mediated by lactosylated poly-L-lysine into hepatoma cells. Nucleic Acids Res. 21:871-878 (1993).Google Scholar
  101. 101.
    A. A. Rosenkranz, S. V. Yachmenev, D. A. Jans, N. V. Serebryakova, V. I. Murav'ev, R. Peters, and A. S. Sobolev. Receptor-mediated endocytosis and nuclear transport of a transfecting DNA construct. Exp. Cell. Res. 199:323-329 (1992).Google Scholar
  102. 102.
    T. Ferkol, J. C. Perales, F. Mularo, and R. W. Hanson. Receptor mediated gene transfer into macrophages. Proc. Natl. Acad. Sci. USA 93:101-105 (1996).Google Scholar
  103. 103.
    T. Ferkol, C. S. Kaetzel, and P. B. Davis. Gene transfer into respiratory epithelial cells by targeting the polymeric immunoglo-buline receptor. J. Clin. Invest. 92:2394 (1993).Google Scholar
  104. 104.
    V. S. Trubetskoy, V. P. Torchilin, S. J. Kennel, and L. Huang. Use of N-terminal modified poly(L-lysine)-antibody conjugate as a carrier for targeted gene delivery in mouse lung endothelial cells. Bioconjug. Chem. 3:323-327 (1992).Google Scholar
  105. 105.
    J. B. Chen, S. Gamou, A. Takayanagi, and N. Shimizu. A novel gene delivery system using EGF receptor-mediated endocytosis. FEBS Lett. 338:167-169 (1994).Google Scholar
  106. 106.
    E. Wagner, M. Zenke, M. Cotten, H. Beug, and M. L. Birnstiel. Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proc. Natl. Acad. Sci. USA 87:3410-3414 (1990).Google Scholar
  107. 107.
    E. Wagner, C. Plank, K. Zatloukal, M. Cotten, and M. L. Birnstiel. Influenza-virus hemagglutinin-HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like genetransfer vehicle. Proc. Natl. Acad. Sci. USA 89:7934-7938 (1992).Google Scholar
  108. 108.
    M. S. Wadhwa, D. L. Knoell, A. P. Young, and K. G. Rice. Targeted gene delivery with a low molecular weight glycopeptide carrier. Bioconjug. Chem. 6:283-291 (1995).Google Scholar
  109. 109.
    J. Murata, Y. Ohya, and T. Ouchi. Possibility of application of quaternary chitosan having pendant galactose residues as gene delivery tool. Carbohyd. Polym. 29:69-74 (1996).Google Scholar
  110. 110.
    I. A. Simpson and S. W. Cushman. Hormonal regulation of mammalian glucose transport. Annu. Rev. Biochem. 55:1059-1089 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Stefaan C. De Smedt
    • 1
  • Joseph Demeester
    • 2
  • Wim E. Hennink
    • 3
  1. 1.Faculty of PharmacyGhent UniversityBelgium
  2. 2.Faculty of PharmacyGhent UniversityBelgium
  3. 3.Department of PharmaceuticsUniversity of Utrechtthe Netherlands

Personalised recommendations