Neurochemical Research

, Volume 25, Issue 5, pp 591–602 | Cite as

Searching for Depolarization-Induced Genes that Modulate Synaptic Plasticity and Neurotrophin-Induced Genes that Mediate Neuronal Differentiation

  • Harvey R. Herschman
  • Gregory D. Ferguson
  • Jonathan D. Feldman
  • Robin Farias-Eisner
  • Linda Vician
Article

Abstract

We identify and characterize two classes of immediate-early genes: (i) genes, induced by depolarization in neurons, that play a role in depolarization-induced neuronal plasticity and (ii) genes, induced in neuronal precursors by neurotrophins, that play a causal role in neurotrophin-directed neuronal differentiation. We use rat PC12 pheochromocytoma cells to identify (i) genes preferentially induced by [depolarization or forskolin] versus [Nerve Growth Factor (NGF) or Epidermal Growth Factor (EGF)] and (ii) genes preferentially induced by NGF versus EGF. We describe (i) a collection of genes preferentially induced by depolarization/forskolin in PC12 cells and by kainic acid in vivo, and (ii) a collection of genes preferentially induced by NGF. The synaptotagmin IV gene encodes a synaptic vesicle protein whose level is modulated by depolarization. NGF preferentially induces the urokinase-plasminogen activator receptor in PC12 cells. Antisense oligonucleotide and anti-UPAR antibody experiments demonstrate that NGF-induced UPAR expression is required for NGF-driven PC12 cell differentiation.

Depolarization forskolin nerve growth factor synaptotagmin UPAR PC12 cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Herschman, H. R. 1991. Primary response genes induced by growth factors and tumor promoters. Pages 281-319, in Richardson, C. C., Abelson, J. N., Meister, A., and Walsh, C.T. (eds.), Annual Review of Biochemistry, vol. 60, Annual Reviews, Inc., Palo Alto, California.Google Scholar
  2. 2.
    Arenander, A. T., and Herschman, H. R. 1992. Primary response gene expression in the nervous system. Pages 89-123, in Fallon, J. H. and Loughlin, S. E. (eds.), Neurotrophic Factors, Academic Press, New York.Google Scholar
  3. 3.
    Shafer, T. J., and Atchison, W. D. 1991. Transmitter, ion channel and receptor properties of pheochromocytoma (PC12) cells: a model for neurotoxicological studies. Neurotoxicology 12:473-492.Google Scholar
  4. 4.
    Fujita, K., Lazarovici, P., and Guroff, G. 1989. Regulation of the differentiation of PC12 pheochromocytoma cells. Environ. Health Perspect. 80:127-142.Google Scholar
  5. 5.
    Nedivi, E., Hevroni, D., Naot, D., Israeli, D., and Citri, Y. 1993. Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature 363:718-722.Google Scholar
  6. 6.
    Vician, L., Lim, I. K., Ferguson, G., Tocco, G., Baudry, M., and Herschman, H. R. 1995. Synaptotagmin IV is an immediate early gene induced by depolarization in PC12 cells and in brain. Proc. Natl. Acad. Sci. USA 92:2164-2168.Google Scholar
  7. 7.
    Hilbush, B. S., and Morgan, J. I. 1994. A third synaptotagmin gene, Syt3, in the mouse. Proc. Nat. Acad. Sci. USA 91: 8195-8199.Google Scholar
  8. 8.
    Davletov, B.A., and Sudhof, T.C. 1993. A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J. Biol. Chem. 268:26386-26390.Google Scholar
  9. 9.
    Zhang, J. Z., Davletov, B. A., Sudhof, T. C., and Anderson, R. G. W. 1994. Synaptotagmin 1 is a high affinity receptor for clathrin AP-2: Implications for membrane recycling. Cell 78:751-750.Google Scholar
  10. 10.
    Hata, Y., Davletov, B., Petrenko, A.C., Jahn, R., and Südhof, T.C. 1993. Interaction of synaptotagmin with the cytoplasmic domains of neurexins. Neuron 10:307-315.Google Scholar
  11. 11.
    Perin, M.S. 1994. The COOH terminus of synaptotagmin mediates interaction with the neurexins. J. Biol. Chem. 269: 8576-8581.Google Scholar
  12. 12.
    Nonet, M. L., Grundahl, K., Meyer, B.J., and Rand, J.B, 1993. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 73:1291-1305.Google Scholar
  13. 13.
    DiAntonio, A., and Schwarz, T. L. 1994. The effect on synaptic physiology of synaptotagmin mutations in drosophila. Neuron 12:909-920.Google Scholar
  14. 14.
    Zhang, J. Z., Davletov, B. A., Sudhof, T. C., and Anderson, R. G. W. 1994. Synaptotagmin 1 is a high affinity receptor for clathrin AP-2: Implications for membrane recycling. Cell 78:751-750.Google Scholar
  15. 15.
    Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., and Silva, A. J. 1994. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59-68.Google Scholar
  16. 16.
    Yin, J. C. P., Wallach, J. S., del Vecchio, M., Wilder, E. L., Zhou, H., Quinn, W. G., and T. Tully, T. 1994. Induction of a dominant negative CREB transgene specifically blocks long-term memory in drosophila. Cell 79:49-58.Google Scholar
  17. 17.
    Tocco, G., Bi, X., Vician, L., Lim, I.K., Herschman, H., and Baudry, M. 1996. Two synaptotagmin genes, Syt1 and Syt4, are differentially regulated in adult brain and during postnatal development following kainic acid-induced seizures. Mol. Brain Res. 40:229-239.Google Scholar
  18. 18.
    Ferguson, G. D., Thomas, D. M., Elferink, L. A., and Herschman, H.R. 1999. Synthesis, degradation and subcellular localization of synaptotagmin IV, a neuronal immediate early gene product. J. Neurochem. 72:1821-1831.Google Scholar
  19. 19.
    Thomas, D. M., Ferguson, G. D., Herschman, H. R., and Elferink, L. A. 1999. Functional and biochemical analysis of the C2 domains of synaptotagmin IV. Mol. Biol. Cell 10:2285-2295.Google Scholar
  20. 20.
    Littleton, J. T., Serano, T. L., Rubin, G. M., Ganetzky, B., and Chapman, E. R. 1999. Synaptic function modulated by changes in the ratio of synaptotagmin I and IV. Nature 400:757-760.Google Scholar
  21. 21.
    Frank, D. A., and Greenberg, M. E. 1994. CREB: a mediator of long-term memory from mollusks to mammals. Cell 79:5-8.Google Scholar
  22. 22.
    Geppert, M., Goda, Y., Hammer, R. E., Li, C., Rosahl, T. W., Stevens, C. F., and Sudhof, T. C. 1994. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717-727.Google Scholar
  23. 23.
    Lisitsyn, N., Lisitsyn, N., and Wigler, M. 1993. Cloning the differences between two complex genomes. Science 259:946-951.Google Scholar
  24. 24.
    Hubank, M., and Schatz, D. G. 1994. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res. 22:5640-5648.Google Scholar
  25. 25.
    Braun, B. S., Frieden, R., Lessnick, S. L., May, W. A., and Denny, C. T. 1995. Identification of target genes for the Ewing' sarcoma EWS/FLI fusion protein by representational difference analysis. Mol. Cell. Biol. 15:4623-4630.Google Scholar
  26. 26.
    Feldman, J. D., Vician, L., Crispino, M., Tocco, G., Marcheselli, V. L., Bazan, N. G., Baudry, M., and Herschman, H. R. 1998. KID-1, a protein kinase induced by depolarization in brain. J. Biol. Chem. 273:16535-16543.Google Scholar
  27. 27.
    Breuer, M., Slebos, R., Verbeek, S., van Lohuizen, M., Wientjens, E., and Berns, A. 1989. Very high frequency of lymphoma induction by a chemical carcinogen in pim-1 transgenic mice. Nature 340:61-63.Google Scholar
  28. 28.
    van Lohuizen, M., Verbeek, S., Krimpenfort, P., Domen, J., Saris, C., Radaszkiewicz, T., and Berns, A. 1989. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 56:673-682.Google Scholar
  29. 29.
    Padma, R., and Nagarajan, L. 1991. The human PIM-1 gene product is a protein serine kinase. Cancer Res. 51:2486-2489.Google Scholar
  30. 30.
    Hoover, D., Friedmann, M., Reeves, R., and Magnuson, N. S. 1991. Recombinant human pim-1 protein exhibits serine/threonine kinase activity. J. Biol. Chem. 266:14018-14023.Google Scholar
  31. 31.
    Feldman, J. D., Vician, L., Crispino, M., Tocco, G., Baudry, M., and Herschman, H. R. 1998. Seizure activity induces PIM-1 expression in brain. J. Neurosci. Res. 53:502-509.Google Scholar
  32. 32.
    Laird, P. W., van der Lugt, N. M., Clarke, A., Domen, J., Linders, K., McWhir, J., Berns, A., and Hooper, M. 1993. In vivo analysis of Pim-1 deficiency. Nucleic Acids Res. 21:4750-4755.Google Scholar
  33. 33.
    Konietzko, U., Kauselmann, G., Scafidi, J., Staubli, U., Mikkers, H., Berns, A., Schweizer, M., Waltereit, R., and Kuhl, D. 1999. Pim kinase expression is induced by LTP stimulation and required for the consolidation of enduring LTP. EMBO J. 18:3359-3369.Google Scholar
  34. 34.
    Crispino, M., Tocco, G., Feldman, J.D., Herschman, H.R., and Baudry, M. 1998. Nurr1 mRNA expression in neonatal and adult rat brain following kainic acid-induced seizure activity. Mol. Brain Res. 59:178-188.Google Scholar
  35. 35.
    Vician, L., Basconcillo, R., and Herschman, H. R. 1997. Identification of genes preferentially induced by nerve growth factor versus epidermal growth factor in PC12 pheochromocytoma cells by means of representational difference analysis. J. Neurosci. Res. 50:32-43.Google Scholar
  36. 36.
    Lyford, G. L., Yamagata, K., Kaufmann, W. E., Barnes, C. A., Sanders, L. K., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Lanahan, A. A., and Worley, P. F. 1995. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeletonassociated protein that is enriched in neuronal dendrites. Neuron 14:433-445.Google Scholar
  37. 37.
    Quinn, C. O., Scott, D. K., Brinckerhoff, C. E., Matrisian, L. M., Jeffrey, J. J., and Partridge, N. C. 1990. Rat collagenase cloning, amino acid sequence comparison, and parathyroid hormone regulation in osteoblastic cells. J. Biol. Chem. 265: 22342-22347.Google Scholar
  38. 38.
    Zeheb, R., and Gelehrter, T. D. 1988. Cloning and sequencing of cDNA for the rat plasminogen activator inhibitor-1. Gene 73:459-468.Google Scholar
  39. 39.
    Mourey, R. J., Vega, Q. C., Campbell, J. S., Wenderoth, M. P., Hauschka, S. D., Krebs, E. G., and Dixon, J. E. 1996. A novel cytoplasmic dual specificity protein tyrosine phosphatase implicated in muscle and neuronal differentiation. J. Biol. Chem. 271:3795-3802.Google Scholar
  40. 40.
    Muda, M., Boschert, U., Dickinson, R., Martinou, J-C., Martinou, I., Camps, M., Schlegel, W., and Arkinstall, S. 1996. MKP-3, a novel cytosolic protein-tyrosine phosphatase that exemplifies a new class of mitogen-activated protein kinase phosphatase. J. Biol. Chem. 271:4319-4326.Google Scholar
  41. 41.
    Machida, C. M., Rodland, K. D., Matrisian, L., Magun, B. E., and Ciment, G. 1989. NGF induction of the gene encoding the protease transin accompanies neuronal differentiation in PC12 cells. Neuron 2:1587-1596.Google Scholar
  42. 42.
    Possenti, R., Eldridge, J. D., Paterson, B. M., Grasso, A., and Levi, A. 1989. A protein induced by NGF in PC12 cells is stored in secretory vesicles and released through the regulated pathway. EMBO J. 8:2217-2223.Google Scholar
  43. 43.
    Farias-Eisner, R., Vician, L., Silver, A., Reddy, S., Rabbani, S.A., and Herschman, H.R. 1999. The urokinase plasminogen activator receptor, UPAR, is preferentially induced by Nerve Growth Factor in PC12 pheochromocytoma cells and is required for NGF-driven differentiation. J. Neurosci. In Press.Google Scholar
  44. 44.
    Ploug, M., Ronne, E., Behrendt, N., Jensen, A. L., Blasi, F., and Dano, K. 1991. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J. Biol. Chem. 266:1926-1933.Google Scholar
  45. 45.
    Wang, Y., Dang, J., Johnson. L. K., Selhamer, J. J., and Doe, W. F. 1995. Structure of the human urokinase receptor gene and its similarity to CD59 and the Ly-6 family. Eur. J. Biochem. 227:116-122.Google Scholar
  46. 46.
    Degryse, B., Renati, M., Rabbani, S. A., Villa, A., Fazioli, F., and Blasi, F. 1999. Src-dependence and pertussis-toxin sensititvity of urokinase receptor-dependent chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. Blood 94:649-662.Google Scholar
  47. 47.
    Hayden, S. M., and Seeds, N. W. 1996. Modulated expression of plasminogen activator system components in cultured cells from dissociated mouse dorsal root ganglia. J. Neurosci. 16:2307-2317.Google Scholar
  48. 48.
    Del Rosso, M., Anichini, E., Pedersen, N., Blasi, F., Fibbi, G., Pucci, M., and Ruggiero, M. 1993. Urokinase-urokinase receptor interaction: non-mitogenic signal transduction in human epidermal cells. Biochem. Biophys. Res. Commun. 190:347-352.Google Scholar
  49. 49.
    Anichini, E., Zamperini, A., Chevanne, M., Caldini, R., Pucci, M., Fibbi, G., and Del Rosso, M. 1997. Interaction of urokinasetype plasminogen activator with its receptor rapidly induces activation of glucose transporters. Biochem. 36:3076-3083.Google Scholar
  50. 50.
    Goretzki, L., and Mueller, B. M. 1997. Receptor-mediated endocytosis of urokinase-type plasminogen activator is regulated by cAMP-dependent protein kinase. J. Cell Sci. 110:1395-1402.Google Scholar
  51. 51.
    Cao, D., Mizukami, I. F., Garni-Wagner, B. A., Kindzelskii, A. L., Todd, RF 3rd, Boxer, L. A., and Petty, H. R. 1995. Human urokinase-type plasminogenactivator primes neutrophils for superoxide anion release. Possible roles of complement receptor type 3 and calcium. J. Immunol. 154:1817-1829.Google Scholar
  52. 52.
    Vilhardt, F., Nielsen, M., Sandvig, K., and van Deurs, B. 1999. Urokinase-type plasminogen activator receptor is internalized by different mechanisms in polarized and nonpolarized Madin-Darby canine kidney epithelial cells. Mol. Biol. Cell. 10: 179-195.Google Scholar
  53. 53.
    Resnati, M., Guttinger, M., Valcamonica, S., Sidenius, N., Blasi, F., and Fazioli, F. 1996. Proteolytic cleavage of the urokinase receptor substitutes for the agonist-induced chemotactic effect. EMBO J. 15:1572-1582.Google Scholar
  54. 54.
    Brodie, C., Bogi, K., Acs, P., Lazarovici, P., Petrovics, G., Anderson, W. B., and Blumberg, P. M. 1999. Protein kinase Cepsilon plays a role in neurite outgrowth in response to epidermal growth factor and nerve growth factor in PC12 cells. Cell Growth Differ. 10:183-191.Google Scholar
  55. 55.
    Corbit, K. C., Foster, D. A., and Rosner, M. R. M. 1999. Protein kinase Cdelta mediates neurogenic but not mitogenic activation of mitogen-activated protein kinase in neuronal cells. Mol. Cell. Biol. 19:4209-4218.Google Scholar
  56. 56.
    Kaplan, M. D., Olschowka, J. A., and O'Banion, M. K. 1997. Cyclooxygenase-1 behaves as a delayed response gene in PC12 cells differentiated by nerve growth factor. J. Biol. Chem. 272:18534-18537.Google Scholar
  57. 57.
    Toledo-Aral, J. J., Brehm, P., Halegoua, S., and Mandel, G. 1995. A single pulse of nerve growth factor triggers long-term neuronal excitability through sodium channel gene induction. Neuron 14:607-611.Google Scholar
  58. 58.
    Hilborn, M. D., Rane, S. G., and Pollock, J. D. 1997. EGF in combination with depolarization or cAMP produces morphological but not physiological differentiation in PC12 cells. J. Neurosci. Res. 47:16-26.Google Scholar
  59. 59.
    deSouza, S., Lochner, J., Machida, C. M., Matrisian, L. M., and Ciment, G. 1995. A novel nerve growth factor-responsive element in the stromelysin-1 (transin) gene that is necessary and sufficient for gene expression in PC12 cells. J. Biol. Chem. 270:9106-9114.Google Scholar
  60. 60.
    Dewerchin, M., Nuffelen, A. V., Wallays, G., Bouche, A., Moons, L., Carmeliet, P., Mulligan, R. C., and Collen, D. 1996. Generation and characterization of urokinase receptor-deficient mice. J. Clin. Invest. 97:870-878.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Harvey R. Herschman
    • 1
  • Gregory D. Ferguson
    • 2
  • Jonathan D. Feldman
    • 3
  • Robin Farias-Eisner
    • 4
  • Linda Vician
    • 5
  1. 1.Departments of Biological Chemistry. Pharmacology. Molecular Biology. Brain Research InstitutesUCLALos Angeles
  2. 2.Departments of Biological Chemistry. Molecular Biology. Brain Research InstitutesUCLALos Angeles
  3. 3.Pediatrics. Brain Research InstitutesUCLALos Angeles
  4. 4.Obstetrics and Gynecology. Molecular BiologyUSA
  5. 5.Departments of Biological Chemistry. Molecular Biology. Brain Research InstitutesUCLALos Angeles

Personalised recommendations