Advertisement

Journal of Scientific Computing

, Volume 15, Issue 1, pp 29–59 | Cite as

Boundary Conditions and Estimates for the Steady Stokes Equations on Staggered Grids

  • Bertil Gustafsson
  • Jonas Nilsson
Article

Abstract

We consider the steady state Stokes equations, describing low speed flow and derive estimates of the solution for various types of boundary conditions. We formulate the boundary conditions in a new way, such that the boundary value problem becomes non-singular. By using a difference approximation on a staggered grid we are able to derive a non-singular approximation in a direct way. Furthermore, we derive the same type of estimates as for the continuous case. Numerical experiments confirm the theoretical results.

stokes equations staggered grids boundary conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Abdallah, S. (1987). Numerical solution for the pressure Poisson equation with Neumann boundary conditions using a non-staggered grid, I. J. Comput. Phys. 70, 182–192.Google Scholar
  2. 2.
    Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., and Van der Vorst, H. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, PA.Google Scholar
  3. 3.
    Gustafsson, B., and Nilsson, J. (2000). Fourth order methods for the Stokes and Navier-Stokes equations on staggered grids. Submitted to Frontiers of Computational Fluid Dynamics.Google Scholar
  4. 4.
    Harlow, F. H., and Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8, 2181–2189.Google Scholar
  5. 5.
    Morinishi, Y., Lund, T. S., Vasilyev, O.V., and Moin, P. (1998). Fully conservative higher order finite difference schemes for incompressible flow. J. Comp. Phys. 143, 90–124.Google Scholar
  6. 6.
    Strikwerda, J. C. (1984). Finite difference methods for the Stokes and Navier-Stokes equations. SIAM J. Sci. Stat. Comput. 5, 56–68.Google Scholar
  7. 7.
    Tau, E. Y. (1992). Numerical solution of the steady Stokes equations. J. Comput. Phys. 90, 190–195.Google Scholar
  8. 8.
    Wesseling, P., Segal, A., and Kassels, C. G. M. (1999). Computing flows on general three-dimensional nonsmooth staggered grids. J. Comp. Phys. 149, 333–362.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Bertil Gustafsson
    • 1
  • Jonas Nilsson
    • 1
  1. 1.Department of Scientific ComputingUppsala UniversityUppsalaSweden

Personalised recommendations