Journal of Quantitative Criminology

, Volume 15, Issue 4, pp 423–450 | Cite as

The Spatial Patterning of County Homicide Rates: An Application of Exploratory Spatial Data Analysis

  • Steven F. Messner
  • Luc Anselin
  • Robert D. Baller
  • Darnell F. Hawkins
  • Glenn Deane
  • Stewart E. Tolnay


The possibility that homicides can spread from one geographic area toanother has been entertained for some time by social scientists, yetsystematic efforts to demonstrate the existence, or estimate the strength,of such a diffusion process are just beginning. This paper uses exploratoryspatial data analysis (ESDA) to examine the distribution of homicides in 78counties in, or around, the St. Louis metropolitan area for two timeperiods: a period of relatively stable homicide (1984–1988) and aperiod of generally increasing homicide (1988–1993). The findingsreveal that homicides are distributed nonrandomly, suggestive of positivespatial autocorrelation. Moreover, changes over time in the distribution ofhomicides suggest the possible diffusion of lethal violence out of onecounty containing a medium-sized city (Macon County) into two nearbycounties (Morgan and Sangamon Counties) located to the west. Althoughtraditional correlates of homicide do not account for its nonrandom spatialdistribution across counties, we find some evidence that more affluentareas, or those more rural or agricultural areas, serve as barriers againstthe diffusion of homicides. The patterns of spatial distribution revealedthrough ESDA provide an empirical foundation for the specification ofmultivariate models which can provide formal tests for diffusion processes.

spatial patterning homicide county homicide rates exploratory spatial data analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anselin, L. (1988). Spatial Econometrics, Kluwer Academic, Boston.Google Scholar
  2. Anselin, L. (1994). Exploratory spatial data analysis and geographic information systems. In Painho, M. (ed.), New Tools for Spatial Analysis, Eurostat, Luxembourg, pp. 45–54.Google Scholar
  3. Anselin, L. (1995). Local indicators of spatial association-LISA. Geograph. Anal. 27: 93–115.Google Scholar
  4. Anselin, L. (1996). The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In Fischer, M., Scholten, H. J., and Unwin, D. (eds.), Spatial Analytical Perspectives on GIS, Taylor & Francis, London, pp. 111–125.Google Scholar
  5. Anselin, L. (1998). Exploratory spatial data analysis in a geocomputational environment. In Longley, P. A., Brooks, S. M., McDonnell, R., and Macmillan, B. (eds.), Geocomputation, a Primer, Wiley, New York, pp. 77–94.Google Scholar
  6. Anselin, L. (1999). Interactive techniques and exploratory spatial data analysis. In Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind, D. W. (eds.), Geographical Information Systems: Principles, Techniques, Management and Applications, Wiley, New York, pp. 251–264.Google Scholar
  7. Anselin, L., and Bao, S. (1997). Exploratory spatial data analysis linking SpaceStat and ArcView. In Fischer, M., and Getis, A. (eds.), Recent Developments in Spatial Analysis, Springer-Verlag, Berlin, pp. 35–59.Google Scholar
  8. Anselin, L., and Bera, A. K. (1998). Spatial dependence in linear regression models with an introduction to spatial econometrics. In Ullah, A., and Giles, D. E. A. (eds.), Handbook of Applied Economic Statistics, Marcel Dekker, New York, pp. 237–289.Google Scholar
  9. Anselin, L., and Smirnov, O. (1998). The SpaceStat-ArcView integrated environment for spatial data analysis. Working paper, Bruton Center, University of Texas at Dallas.Google Scholar
  10. Ayers, E. L. (1984). Vengeance and Justice: Crime and Punishment in the 19th-Century American South, Oxford University Press, New York.Google Scholar
  11. Bailey, T. C., and Gatrell, A. C. (1995). Interactive Spatial Data Analysis, Longman, Harlow.Google Scholar
  12. Block, C. R., and Block, R. L. (eds.). (1993). Questions and Answers in Lethal and Non-Lethal Violence, National Institute of Justice, Washington, DC.Google Scholar
  13. Brown, L. A. (1981). Innovation Diffusion, a New Perspective, Methuen, New York.Google Scholar
  14. Buja, A., Cook, D., and Swayne, D. (1996). Interactive high-dimensional data visualization. J. Computat. Graph. Stat. 5: 123–143.Google Scholar
  15. Bureau of the Census (1988). County and City Data Book, U.S. Government Printing Office, Washington, DC.Google Scholar
  16. Cleveland, W. S. (1993). Visualizing Data, Hobart Press, Summit, NJ.Google Scholar
  17. Cliff, A. D., and Ord, J. K. (1981). Spatial Processes, Models and Applications, Pion, London.Google Scholar
  18. Cohen, J., Cork, D., Engberg, J., and Tita, G. (1998). The role of drug markets and gangs in local homicide rates. Homicide Stud. 2: 241–262.Google Scholar
  19. Coleman, J. S. (1968). The mathematical study of change. In Blalock, H. M., and Blalock, A. B. (eds.), Methodology in Social Research, McGraw-Hill, New York, pp. 428–478.Google Scholar
  20. Cressie, N. (1993). Statistics for Spatial Data, Wiley, New York.Google Scholar
  21. DeFronzo, J., and Hannon, L. (1998). Welfare assistance levels and homicide rates. Homicide Stud. 2: 31–45.Google Scholar
  22. Good, I. J. (1983). The philosophy of exploratory data analysis. Philos. Sci. 50: 283–295.Google Scholar
  23. Hagerstrand, T. (1965). Aspects of the spatial structure of social communication and the diffusion of information. Papers Region. Sci. Assoc. 16: 27–42.Google Scholar
  24. Hagerstrand, T. (1967). Innovation Diffusion as a Spatial Process, University of Chicago Press, Chicago.Google Scholar
  25. Haining, R. (1990). Spatial Data Analysis in the Social and Environmental Sciences, Cambridge University Press, Cambridge.Google Scholar
  26. Hearnshaw, H. M., and Unwin, D. M. (1994). Visualization in Geographical Information Systems, John Wiley, Chichester.Google Scholar
  27. Hollinger, P. C., Offer, D., and Ostrov, E. (1987). An epidemiologic study of violent death, population changes, and the potential for prediction. Am. J. Psychiatry 144: 215–219.Google Scholar
  28. Kellerman, A. (1966). Understanding and Preventing Violence: A Public Health Perspective, National Institute of Justice Review, U.S. Government Printing Offices, Washington, DC.Google Scholar
  29. Kposowa, A. J., and Breault, K. D. (1993). Reassessing the structural covariates of U.S. homicide rates: A county level study. Sociol. Focus 26: 27–46.Google Scholar
  30. Kposowa, A. J., Breault, K. D., and Harrison, B. M. (1995). Reassessing the structural covariates of violent and property crime in the USA: A county level analysis.Google Scholar
  31. Land, K. C., McCall, P. L., and Cohen, L. E. (1990). Structural covariates of homicide rates: Are there any invariances across time and social space? Am. J. Sociol. 95: 922–963.Google Scholar
  32. Loftin, C. (1986). Assaultive violence as a contagious process. Bull. N.Y. Acad. Med. 62: 550–555.Google Scholar
  33. MacEachren, A. M., and Kraak, M.-J. (1997). Exploratory cartographic visualization: advancing the agenda. Comput. Geosci. 23: 335–343.Google Scholar
  34. Nielsen, F., and Alderson, A. S. (1997). The Kuznets curve and the great U-turn: Income inequality in U.S. counties, 1970–90. Am. Sociol. Rev. 62: 12–33.Google Scholar
  35. Rasmussen, D. W., Benson, B. L., and Sollars, D. L. (1993). Spatial competition in illicit drug markets: The consequences of increased drug law enforcement. Rev. Region. Stud. 23: 219–236.Google Scholar
  36. Riedel, M. (1999). Sources of homicide data. In Dwayne Smith, M., and Zahn, M. A. (eds.), Homicide Studies: A Sourcebook of Social Research, Sage, Thousand Oaks, CA.Google Scholar
  37. Rokaw, W. M., Mercy, J. A., and Smith, J. C. (1990). Comparing death certificate data with FBI crime reporting statistics on U.S. homicides. Public Health Rep. 105: 447–455.Google Scholar
  38. Roncek, D. W. (1993). Mapping crime: An inescapable but valuable task for intracommunity analysis. In Block, C. R., and Block, R. L. (eds.), Questions and Answers in Lethal and Non-Lethal Violence, National Institute of Justice, Washington, DC, pp. 155–161.Google Scholar
  39. Roncek, D. W., and Maier, P. A. (1991). Bars, blocks, and crimes revisited: Linking the theory of routine activities to the empiricism of ''hot spots.'' Criminology 29: 725–753.Google Scholar
  40. Sherman, L. W., Gartin, P. R., and Buerger, M. E. (1989). Hot spots of predatory crime: Routine activities and the criminology of place. Criminology 27: 27–55.Google Scholar
  41. Tolnay, S. E., Deane, G. D., and Beck, E. M. (1996). Vicarious violence: Spatial effects on Southern lynchings, 1890–1919. Am. J. Sociol. 102: 788–815.Google Scholar
  42. Tukey, J. W. (1977). Exploratory Data Analysis, Addison-Wesley, Reading, MA.Google Scholar
  43. U.S. Department of Health and Human Services (1997). Injury Mortality Atlas of the United States 1986–1994, National Center for Injury Prevention and Control, Atlanta, GA.Google Scholar
  44. Upton, G. J., and Fingleton, B. (1985). Spatial Data Analysis by Example, Wiley, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Steven F. Messner
    • 1
    • 2
  • Luc Anselin
    • 2
    • 3
  • Robert D. Baller
    • 1
    • 2
  • Darnell F. Hawkins
    • 2
    • 4
  • Glenn Deane
    • 1
  • Stewart E. Tolnay
    • 1
  1. 1.State University of New York at AlbanyAlbany
  2. 2.National Consortium on Violence ResearchPittsburgh
  3. 3.University of IllinoisUrbana
  4. 4.University of Illinois at ChicagoChicago

Personalised recommendations