Advertisement

Plant Molecular Biology Reporter

, Volume 16, Issue 4, pp 351–364 | Cite as

High Throughput BAC DNA Isolation for Physical Map Construction of Sorghum (Sorghum bicolor)

  • Robert R. Klein
  • Daryl T. Morishige
  • Patricia E. Klein
  • Jianmin Dong
  • John E. Mullet
Article

Abstract

With the aim of constructing a physical map of sorghum, we developed a rapid, high throughput approach for isolating BAC DNA suitable for restriction endonuclease digestion fingerprinting, PCR- based STS-content mapping, and BAC-end sequencing. The system utilizes a programmable 96 channel liquid handling system and associated accessories that permit bacterial cultivation and DNA isolation in 96-well plate format. This protocol details culture conditions that optimize bacterial growth in deep-well plates and criteria for BAC DNA isolation to obtain high yields of quality BAC DNA. The system is robust, accurate, and relatively cost-effective. The BAC DNA isolation system has been tested during efforts to construct a physical map of sorghum.

BAC BAC-end sequencing DNA isolation sorghum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balding DJ (1994) Design and analysis of chromosome physical mapping experiments. Phil Trans R So London B 344: 329–335.Google Scholar
  2. Boysen C, Simon MI and Hood L (1997) Analysis of the 1.1-Mb human α/δ T-cell receptor locus with bacterial artificial chromosome clones. Genome Res 7: 330–338.Google Scholar
  3. Evans GA, Lewis KA (1989) Physical mapping of complex genomes by cosmid multiplex analysis. Proc Natl Acad Sci USA 86: 5030–5034.Google Scholar
  4. Fajas L, Staels B and Auwerx J (1997) Cycle sequencing on large DNA templates. Bio Techniques 23: 1034–1036.Google Scholar
  5. Green ED and Olson MV(1990) Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction. Proc Natl Acad Sci USA 87: 1213–1217.Google Scholar
  6. OlsonM, Hood L, Cantor C and Botstein D (1989) A common language for physical mapping of the human genome. Science 245: 1434–1435.Google Scholar
  7. Rosenblum BB, Lee LG, Spurgeon SL, Khan SH, Menchen SM, Heiner CR and Chen SM (1997) New dye-labeled terminators for improved DNA sequencing patterns. Nucleic Acids Res 25: 4500–4504.Google Scholar
  8. Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd edition, C. Nolan, ed. Cold Spring Harbor Laboratory Press, USA.Google Scholar
  9. Schmitt H, Kim U-J, Slepak T, Blin N, Simon MI and Shizuya H (1996) Framework for a physical map of the human 22q13 region using bacterial artificial chromosomes (BACs). Genomics 33: 9–20.Google Scholar
  10. Sulston J, Mallett F, Staden R, Durbin R, Horsnell T and Coulson A (1988) Software for genome mapping by fingerprinting techniques. Comput Applic Biosci 4: 125–132.Google Scholar
  11. Sulston J, Mallett F, Durbin R and Horsnell T (1989) Image analysis of restriction enzyme fingerprint autoradiograms. Comput Applic Biosci 5: 101–106.Google Scholar
  12. Quanzhou T, Qian Y, Zhao H, Yu S, Qui L, Wu B, Zhu J, Yu D, Liu X and Hong G (1995) Construction of Oryza sativa genome contigs by fingerprint strategy. Cell Res 5: 263–271.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Robert R. Klein
    • 1
  • Daryl T. Morishige
    • 2
  • Patricia E. Klein
    • 2
  • Jianmin Dong
    • 2
  • John E. Mullet
    • 2
  1. 1.Southern Crops Research LaboratoryUSDA-ARSCollege StationUSA
  2. 2.Department of Biochemistry-Biophysics and Crop Biotechnology CenterTexas A&M UniversityCollege StationUSA

Personalised recommendations