Neurochemical Research

, Volume 25, Issue 2, pp 247–255 | Cite as

Degradation of Soluble Amyloid β-Peptides 1–40, 1–42, and the Dutch Variant 1–40Q by Insulin Degrading Enzyme from Alzheimer Disease and Control Brains

  • Adriana Pérez
  • Laura Morelli
  • Juan Carlos Cresto
  • Eduardo M. Castaño
Article

Abstract

Insulin degrading enzyme (IDE) is a metalloprotease that has been involved in amyloid β peptide (Aβ) degradation in the brain. We analyzed the ability of human brain soluble fraction to degrade Aβ analogs 1–40, 1–42 and the Dutch variant 1–40Q at physiological concentrations (1 nM). The rate of synthetic 125I-Aβ degradation was similar among the Aβ analogs, as demonstrated by trichloroacetic acid precipitation and SDS-PAGE. A 110 kDa protein, corresponding to the molecular mass of IDE, was affinity labeled with either 125I-insulin, 125I-Aβ 1–40 or 125I-Aβ 1–42 and both Aβ degradation and cross-linking were specifically inhibited by an excess of each peptide. Sensitivity to inhibitors was consistent with the reported inhibitor profile of IDE. Taken together, these results suggested that the degradation of Aβ analogs was due to IDE or a closely related protease. The apparent Km, as determined using partially purified IDE from rat liver, were 2.2 ± 0.4, 2.0 ± 0.1 and 2.3 ± 0.3 μM for Aβ 1–40, Aβ 1–42 and Aβ 1–40Q, respectively. Comparison of IDE activity from seven AD brain cytosolic fractions and six age-matched controls revealed a significant decrease in Aβ degrading activity in the first group, supporting the hypothesis that a reduced IDE activity may contribute to Aβ accumulation in the brain.

Amyloid β peptide Alzheimer's disease insulin degrading enzyme Dutch variant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Selkoe, D. J. 1994. Cell biology of the amyloid β-protein precursor and the mechanism of Alzheimer's disease. Annu. Rev. Cell. Biol. 10:373–403.Google Scholar
  2. 2.
    Selkoe, D. J. 1996. Amyloid β-protein and the genetics of Alzheimer's disease. J. Biol. Chem. 271:18295–18298.Google Scholar
  3. 3.
    Levy, E., Carman M. D., Fernandez Madrid I., Power M. D., Lieberburg I., van Duinen S. G., Gererd T., Bots G. T. A. M., Luvendijk W., and Frangione B. 1990. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage. Science 248:1124–1126.Google Scholar
  4. 4.
    Mann, D. M. A. 1989. Cerebral amyloidosis, aging and Alzheimer's disease; a contribution from studies on Down's syndrome. Neurobiol. Aging 10:397–399.Google Scholar
  5. 5.
    Seubert, P., Vigo Pelfrey, C., Esch, F., Lee, M., Dovey, H., Davis, D., Sinha, S., Sclossmacher, G., Whaley, J., Swindlehurst, C., Mc Cormack, R., Wolfert, R., Selkoe, D. J., Lieberburg, I., and Schenk, D. 1992. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature 359:325–327.Google Scholar
  6. 6.
    Miller, D. L., Papayannopoulos, I. A., Styles, J., Bobin, S. A., Lin, Y. Y., Biemann, K., and Iqbal K. 1993. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer's disease. Arch. Biochem. Biophys. 301:41–52.Google Scholar
  7. 7.
    Roher, A. E., Kasunic, T. C., Woods, A. S., Cotter, R. J., Ball, M. J., and Fridman, R. 1994. Proteolysis of Aβ peptide from Alzheimer disease brain by gelatinase A. Biochem. Biophys. Res. Commun. 205:1755–1761.Google Scholar
  8. 8.
    Naidu, A., Quon, D., and Cordell, B. 1995. β-amyloid peptide produced in vitro is degraded by proteinases released by cultured cells. J. Biol. Chem. 270:1369–1374.Google Scholar
  9. 9.
    Backstrom, J. R., Lim, G. P., Cullen, M. J., and Tokes, Z. A. 1996. Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1–40). J. Neurosci. 16:7910–7919.Google Scholar
  10. 10.
    Howell, S., Nalantoglu, J., and Crine, P. 1995. Neutral endopeptidase can hydrolyze β-amyloid (1–40) but shows no effect on β-amyloid precursor protein metabolism. Peptides 16:647–652.Google Scholar
  11. 11.
    Ladror, U. S., Snyder, S. W., Wang, G. T., Holzman, T. F., and Krafft, G. A. 1994. Cleavage at the amino and carboxyl termini of Alzheimer's amyloid-β by cathepsin D. J. Biol. Chem. 269:18422–18428.Google Scholar
  12. 12.
    Qiu, W. Q., Borth, W., Ye, Z., Haass, C., Teplow, D. B., and Selkoe, D. 1996. Degradation of amyloid β-protein by a serine protease α2-macroglobulin complex. J. Biol. Chem. 271:8443–8451.Google Scholar
  13. 13.
    Qiu, W. Q., Walsh, D. M., Ye, Z., Vekrellis, K., Zhang, J., Podlisny, M. B., Rosner, M. R., Safavi, A., Hersh, L. B., and Selkoe, D. J. 1998. Insulin-degrading enzyme regulates extracellular levels of amyloid beta protein by degradation. J. Biol. Chem. 273:32730–3278.Google Scholar
  14. 14.
    Kurochkin, I. V. and Goto, S. 1994. Alzheimer's β-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett. 345:33–37.Google Scholar
  15. 15.
    Mc Dermott, J. R. and Gibson, A. M. 1997. Degradation of Alzheimer's β-amyloid protein by human and rat brain peptidases: involvement of insulin-degrading enzyme. Neurochem. Res. 22:49–56.Google Scholar
  16. 16.
    Bernstein, H.-G., Ansorge, S., Riederer, P., Reiser, M., Frölich, L., and Bogerts, B. 1999. Insulin-degrading enzyme in the Alzheimer's disease brain: prominent localization in neurons and senile plaques. Neurosci. Lett. 263:161–164.Google Scholar
  17. 17.
    Duckworth, W. C. 1988. Insulin degradation: mechanisms, products and significance. Endocrine Rev. 9:319–345.Google Scholar
  18. 18.
    Affholter, J. A., Fried, V. A., and Roth, R. A. 1988. Human insulin-degrading enzyme shares structural and functional homologies with E. coli protease III. Science 242:1415–1418.Google Scholar
  19. 19.
    Kuo, W.-L., Montag, A. G., and Rosner, M. R. 1993. Insulin-degrading enzyme is differentially expressed and developmentally regulated in various rat tissues. Endocrinology 132:604–611.Google Scholar
  20. 20.
    Akiyama, H., Yokono, K., Shii, K., Ogawa, W., Taniguchi, H., and Baba, S. 1990. Natural regulatory mechanisms of insulin degradation enzyme. Biochem. Biophys. Res. Commun. 170: 1325–1330.Google Scholar
  21. 21.
    Misbin, R. I., Almira, E. C., Duckworth, W. C., and Mehl, T. D. 1983. Inhibition of insulin degradation by insulin-like growth factors. Endocrinology 113:1525.Google Scholar
  22. 22.
    Garcia, J. V., Gehm, B. D., and Rosner, M. R. 1989. An evolutionarily conserved enzyme degrades transforming growth factor-alpha as well as insulin. J. Cell. Biol. 109:1301–1307.Google Scholar
  23. 23.
    Müller, D., Baumeister, H., Buck, F., and Richter, D. 1991. Atrial natriuretic peptide is a high-affinity substrate for rat insulin-degrading enzyme. Eur. J. Biochem. 202:285–292.Google Scholar
  24. 24.
    Safavi, A., Miller, B. C., Cottam, L., and Hersh, L. B. 1996. Identification of gamma-endorphin-generating enzyme as insulin-degrading enzyme. Biochemistry 35:14318–14325.Google Scholar
  25. 25.
    Baumeister, H., Müller, D., Rehbein, M., and Richter, D. 1993. The rat insulin-degrading enzyme: Molecular cloning and characterization of tissue-specific transcripts. FEBS Lett. 317:250–254.Google Scholar
  26. 26.
    Soto, C., Sigurdsson, E. M., Morelli, L., Kumar, R. A., Castaño, E. M., and Frangione, B. 1998. β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer disease. Nature Med. 4:822–825.Google Scholar
  27. 27.
    Schägger, H. and von Jagow, G. 1987. Tricine-sodium dodecyl sulfate-polyacrilamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368–379.Google Scholar
  28. 28.
    Shii, K., Baba, S., Yokono, K., and Roth, R. A. 1985. Covalent linkage of 125I-insulin to a cytosolic insulin-degrading enzyme. J. Biol. Chem. 260:6503–6506.Google Scholar
  29. 29.
    Morelli, L., Giambartolomei, G. H., Prat, M. I., Castaño, E. M. 1999. Internalization and resistance to degradation of Alzheimer's Aβ 1–42 at nanomolar concentrations in THP-1 human monocytic cell line. Neurosci. Lett. 262:5–8.Google Scholar
  30. 30.
    Shii, K., Yokono, K., Baba, S., and Roth, R. A. 1986. Purification and characterization of insulin-degrading enzyme from human erythrocytes. Diabetes 35:675–683.Google Scholar
  31. 31.
    Kurochkin, I. V. 1998. Amyloidogenic determinant as a sustrate recognition motif of insulin-degrading enzyme. FEBS Lett. 427:153–156.Google Scholar
  32. 32.
    Soto, C., Castaño, E. M., Frangione, B., and Inestrosa, N. C. 1995. The alfa-helical to beta-strand transition in the amino-terminal fragment of the amyloid beta-peptide modulates amyloid formation. J. Biol. Chem. 270:3063–3067.Google Scholar
  33. 33.
    Castaño, E. M., Prelli, F., Wisniewski, T., Golabek, A., Kumar, R. A., Soto, C., and Frangione, B. 1995. Fibrillogenesis of Alzheimer's amyloid β peptides and apolipoprotein E. Biochem. J. 306:599–604.Google Scholar
  34. 34.
    Hari, J., Shii, K. and Roth., R. A. 1987. In vivo association of 125I-insulin with a cytosolic insulin-degrading enzyme: detection by covalent cross-linking and immunoprecipitation with a monoclonal antibody. Endocrinology 120:829–831.Google Scholar
  35. 35.
    Gehm, B. D. and Rosner, M. R. 1991. Regulation of insulin, epidermal growth factor, and transforming growth factor-αlevels by growth factor-degrading enzymes. Endocrinology 128:1603–1610.Google Scholar
  36. 36.
    Matsas, R., Kenny, J. and Turner, A. J. 1984. The metabolism of neuropeptides. Biochem. J. 223:433–440.Google Scholar
  37. 37.
    Jarrett, J., Berger, E. P., and Lansbury, P. T. Jr. 1993. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer's disease. Biochemistry 32:4693–4697.Google Scholar
  38. 38.
    Kuo, Y.-M., Emmerling, M. R., Vigo-Pelfrey, C., Kasunic, T. C., Kirkpatrick, J. B., Murdoch, G. H., Ball, M. J., and Roher, A. E. 1996. Water-soluble Aβ(N-40, N-42) oligomers in normal and Alzheimer disease brains. J. Biol. Chem. 271: 4077–4081.Google Scholar
  39. 39.
    Qiu, W. Q., Ye, Z., Kholodenko, D., Seubert, P., and Selkoe, D. J. 1997. Degradation of amyloid β-protein by a metalloprotease secreted by microglia and other neural and non-neural cells. J. Biol. Chem. 272:6641–6646.Google Scholar
  40. 40.
    Nordsted, C., Näslund, J., Tjemberg, L. O., Karlström, A. R., Thyberg, J., and Terenius, L. 1994. The Alzheimer Aβ peptide develops protease resistance in association with its polymerization into fibrils. J. Biol. Chem. 269:30773–30776.Google Scholar
  41. 41.
    Runyan, K., Duckworth, W. C., Kitabchi, A. E., and Huff, G. 1979. The effect on age on insulin-degrading activity in rat tissue. Diabetes 28:324–325.Google Scholar
  42. 42.
    Fergusson, J., Landon, M., Lowe, J., Dawson, S. P., Layfield, R., Hanger, D. P., and Mayer, R. J. 1996. Pathological lesions of Alzheimer's disease and dementia with Lewy bodies brains exhibit immunoreactivity to an ATPase that is a regulatory subunit of the 26S proteasome. Neurosci. Lett. 219:167–170.Google Scholar
  43. 43.
    Saido, T. C. 1998. Alzheimer's disease as proteolytic disorders: anabolism and catabolism of beta-amyloid. Neurobiol. Aging 19:S69–75.Google Scholar
  44. 44.
    Cataldo, A., Barnett, J. L., Berman, S. A., Li, J., Quarless, S., Bursztajn, S., Lippa, C., and Nixon, R. A. 1995. Gene expression and cellular content of cathepsin D in Alzheimer's disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron 14:671–680.Google Scholar
  45. 45.
    Mc Dermott, J. R., Biggins, J. A., and Gibson, A. M. 1992. Human brain peptidase activity with the specificity to generate the N-terminus of the Alzheimer β-amyloid protein from its precursor. Biochem. Biophys. Res. Commun. 185:746–752.Google Scholar
  46. 46.
    Kalayar, C. and Wong, W. T. 1989. Metalloprotease inhibitors which block the differentiation of L6 myoblasts inhibit insulin degradation by the endogenous insulin-degrading enzyme. J. Biol. Chem. 264:8928–8934.Google Scholar
  47. 47.
    Duckworth, W. C., Bennett, R. G., and Hamel, F. G. 1998. Insulin degradation: progress and potential. Endocrine Rev. 19: 608–624.Google Scholar
  48. 48.
    Hamel, F. G., Bennett, R. G., and Duckworth, W. C. 1998. Regulation of multicatalytic enzyme activity by insulin and the insulin-degrading enzyme. Endocrinology 139:4061–4066.Google Scholar
  49. 49.
    Kupfer, S. R., Wilson, E. M., and French F. S. 1994 Androgen and glucocorticoid receptors interact with insulin degrading enzyme. J. Biol. Chem. 269:20622–20628.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Adriana Pérez
    • 1
  • Laura Morelli
    • 2
  • Juan Carlos Cresto
    • 1
  • Eduardo M. Castaño
    • 3
  1. 1.Centro de Investigaciones Endocrinológicas (CEDIE)Hospital Ricardo GutiérrezBuenos AiresArgentina
  2. 2.Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), CONICET, C´tedra de Química Biológica Patológica, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresArgentina
  3. 3.Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), CONICET, C´tedra de Química Biológica Patológica, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresArgentina

Personalised recommendations