Mathematical Geology

, Volume 32, Issue 8, pp 943–968 | Cite as

Deciphering Groundwater Flow Systems in Oasis Valley, Nevada, Using Trace Element Chemistry, Multivariate Statistics, and Geographical Information System

  • Irene M. Farnham
  • Klaus J. Stetzenbach
  • Ashok K. Singh
  • Kevin H. Johannesson


The origin of groundwater discharging via evapotranspiration and from springs within Oasis Valley, Nevada, is of concern owing to the close proximity of the Nevada Test Site (NTS) and the possible contamination of groundwater as a result of underground nuclear testing. Principal components analysis, cluster analysis, and population partitioning, along with a Geographical Information System, were used to decipher groundwater flow patterns in Oasis Valley, Nevada. These multivariate statistical techniques were applied to the trace element chemistry of groundwater samples collected from 26 springs and wells within Oasis Valley, the NTS, and the Nellis Air Force Range. The results of all statistical analyses showed similar geographical trends in the trace element chemistry of the groundwaters included in this study. Differences are observed between the groundwaters from the NTS and those of Oasis Valley based on the concentrations of the elements Li, Ge, Mo, Rb, Ba, U, and Ru. A concentration gradient is observed from lower concentrations in the NTS to increasing concentrations toward Oasis Valley suggesting groundwater flow in an overall southwestward direction from the NTS. Also, a different trace element signature is observed for the waters collected in the northern and western region of Oasis Valley, suggesting another source of groundwater to this area.

principal components analysis cluster analysis population partitioning trace element compositions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T. W., and Darling, D. A., 1954, A test of goodness of fit: Amer. Stat. Assoc. Journ., v. 49, p. 765–769.Google Scholar
  2. Auf der Heyde, T. P. E., 1990, A tutorial on factor and cluster analysis: Jour. Chem. Education, v. 67, no. 6, p. 461–469.Google Scholar
  3. Blankennagel, R. K., and Weir, J. E., Jr., 1973, Geohydrology of the eastern part of Pahute Mesa, Nevada Test Site, Nye County, Nev: U.S. Geol. Surv. Pap. 712B, 35 p.Google Scholar
  4. Claassen, H. C., 1985, Sources and mechanism of recharge for groundwater in the west-central Amargosa Desert, Nevada—A geochemical interpretation: U.S. Geol. Surv. Prof. Pap., 712-F, 30 p.Google Scholar
  5. Cornwall, H. R., and Kleinhampl, F. J., 1961, Geology of Bare Mountain Quadrangle, Nevada: U.S. Geol. Survey Quad. Map CQ-157, 1:62,500.Google Scholar
  6. Creed, J. T., Brockhoff, C. A., Martin, T. D., 1994, Method 200.8, Determination of trace elements in waters and wastes by inductively coupled plasma–mass spectrometry, rev. 5.4: U.S. EPA, Cincinnati, OH, 58 p.Google Scholar
  7. Davisson, M. L., Smith, D. K., Keneally, J., Rose, T. P., 1999, Isotope hydrology of southern Nevada groundwater: Stable isotopes and radiocarbon: Water Resour. Res., v. 35, no. 1, p. 279–294.Google Scholar
  8. Drever, J. I., 1997, The geochemistry of natural waters: surface and groundwater environments, third ed.: Prentice-Hall, Englewood Cliffs, NJ, 436 p.Google Scholar
  9. Dudley, W.W., and Larson, J. D., 1976, Effect of irrigation pumping on desert pupfish habitats in Ash Meadows, Nye County, Nevada: U.S. Geol. Surv. Prof. Pap. 927, 52 p.Google Scholar
  10. Eakin, T. E., 1966, A regional interbasin groundwater flow system in the White River area, southeastern Nevada: Water Resour. Res., v. 2, no. 2, p. 251–271.Google Scholar
  11. Frizzell, V. A., Jr., and Shulters, J., 1990, Geologic map of the Nevada Test Site, Southern Nevada: U.S. Geol. Surv. Misc. Investigations Series, Map I-2046, 1:100,000.Google Scholar
  12. Gauch, H. G., 1993, Prediction, parsimony, and noise: American Scientist, v. 81, p. 468–478.Google Scholar
  13. Harrill, J. R., Gates, J. S., and Thomas, J. M., 1988, Major ground-water flow systems in the Great Basin Region of Nevada, Utah, and adjacent states, U.S.: Geol. Surv. Hydrologic Investigation Atlas, HA-694-C, 1:1,000,000.Google Scholar
  14. Hingston, F. J., Atkinson, R. J., Posner, A. S., and Quirk, J. P., 1967, The specific adsorption of anions: Nature, v. 215, p. 1459–1461.Google Scholar
  15. Hodge, V. F., Johannesson, K. H., and Stetzenbach, K. J., 1996, Rhenium, molybdenum, and uranium in groundwater from the southern Great Basin, USA: Evidence for conservative behavior: Geochim. Cosochim. Acta, v. 60, no. 17, p. 3197–3214.Google Scholar
  16. Hodge, V. F., Stetzenbach, K. J., and Johannesson, K. H, 1998, Similarities in the chemical composition of carbonate groundwaters and seawater: Environ. Sci. Technol., v. 32, no. 17, p. 2481–2486.Google Scholar
  17. Johannesson, K. H., Stetzenbach, K. J., and Hodge, V. F., 1997, Rare earth elements as geochemical tracers of regional groundwater mixing: Geochim. Cosmochim. Acta, v. 61, no. 17, p. 3605–3618.Google Scholar
  18. Johannesson, K. H., Stetzenbach, K. J., Hodge, V. F., Kreamer, D. K., and Zhou, X., 1997, Delineation of groundwater flow systems in the southern Great Basin using aqueous rare earth element distributions: Ground Water, v. 35, no. 5, p. 807–819.Google Scholar
  19. Johnson, R. A., and Wichern, D. W., 1992, Applied multivariate statistical analysis: Prentice-Hall, Englewood Cliffs, NJ, 642 p.Google Scholar
  20. Malmberg, G. T., and Eakin, T. E, 1962, Ground-water appraisal of Sarcobatus Flat and Oasis Valley, Nye and Esmeralda Counties, Nevada: Nevada State Engineer, Ground-Water Resources Reconn. Ser. Rept. 10, 39 p.Google Scholar
  21. Meglin, R. R., 1991, Examining large databases: A chemometric approach using principal component analysis: J. of Chemometrics, v. 5, p. 163–179.Google Scholar
  22. Peterman, Z. E., Struckless, J. S., Mahan, S. A., Marshall, B. D., Gutentag, E. D., and Downey, J. S., 1992, Strontium isotope characterization of the Ash Meadows ground-water system, southern Nevada, USA, in Kharaka, Y. K., and Maest, A. S., eds., Water-Rock Interaction: Proc. 7thWater Rock Interaction Symp., Utah USA: Balkema, Rotterdam, p. 825–829.Google Scholar
  23. Singh, A., 1996, Outliers and robust procedures in some chemometric applications: Chemometrics and Intelligent Laboratory Systems, v. 33, p. 75–100.Google Scholar
  24. Singh, A., and Singh, A. K., 1996, Trend removal in spatially correlated datasets: Math. Geology, v. 28, no. 1, p. 111–131.Google Scholar
  25. Singh, A., Singh, A. K., Flatman, G., 1994, Estimation of background levels of contaminants: Math. Geology, v. 26, no. 3, p. 361–388.Google Scholar
  26. Smedley, P. L., 1991, The geochemistry of rare earth elements in groundwater from the Carnmenellis area, southwest England: Geochim. Cosmochim Acta., v. 55, no. 10, p. 2767–2779.Google Scholar
  27. STATISTICA for Windows, 1995, Vol III: Statistics II, 2nd ed., StatSoft, Inc., p. 3197–3234.Google Scholar
  28. Stetzenbach, K. J., Amano, M., Kreamer, D. K., and Hodge, V. F., 1994, Testing the limits of ICP-MS determination of trace elements in groundwater at the parts-per-trillion level: Ground Water, v. 32, no. 6, p. 976–985.Google Scholar
  29. Thomas, J. I., 1996, Geochemical and isotopic interpretation of groundwater flow, geochemical processes, and age dating of groundwater in the carbonate-rock aquifers of the southern Basin and Range: unpublished Ph.D. dissertation, University of Nevada, Reno, 135 p.Google Scholar
  30. Thomas, J. M., 1988, Delineation of ground-water flow systems in southern Nevada using isotopic and chemical data: Geol. Soc. Am. Abstr. Prog., v. 20, A363.Google Scholar
  31. Thomas, J. I., Welch, A. H., and Dettinger, M. D., 1996, Geochemistry and isotope hydrology of representative aquifers in the Great Basin Region of Nevada, Utah, and Adjacent States: U.S. Geol. Surv. Professional Pap. 1409-C, 100 p.Google Scholar
  32. Ward, J. H., 1963, Hierarchical grouping to optimize an objective function: J. Amer. Stat. Assoc., v. 69, p. 236–244.Google Scholar
  33. White, A. F., 1979, Geochemistry of Ground Water Associated with Tuffaceous Rocks, Oasis Valley, Nevada: U.S. Geol. Surv. Professional Paper, 712-E, 25 p.Google Scholar
  34. White, A. F., and Chuma, N. J., 1987, Carbon and isotopic mass balance models of Oasis Valley—Fortymile Canyon Groundwater Basin, Southern Nevada: Water Res. Res., v. 23, no. 4, p. 571–582.Google Scholar
  35. Winograd, I. J., and Eakin, T. E., 1964, Interbasin movement of groundwater in south-central Nevada–The evidence: Geol. Soc. Am. Abstracts for 1964, Spec. Paper 82, 227 p.Google Scholar
  36. Winograd, I. J., and Friedman, I., 1972, Deuterium as a tracer of ground-water flow, southern Great Basin, Nevada and California: Geol. Soc. Am. Bull., vol. 83, no. 12, p. 3691–3708.Google Scholar
  37. Winograd, I. J., and Thordarson, W., 1975, Hydrogeologic and hydrochemical framework, south-central Great Basin, Nevada-California, with special reference to the Nevada Test Site: U.S. Geol. Surv. Prof. Pap. 712-C, 125 p.Google Scholar
  38. Winograd, I. J., and Pearson, F. J., 1976, Major carbon-14 anomaly in a regional carbonate aquifer: possible evidence for megascale channeling, south central Great Basin: Water Resour. Res., v. 12, no. 6, p. 1125–1143.Google Scholar
  39. Winograd, I. J., and Robertson, F. N., 1982, Deep oxygenated ground water: Anomaly or common occurrence: Science, v. 216, no. 4551, p. 1227–1230.Google Scholar
  40. Wold, S., 1987, Principal component analysis: Chemometrics and Intelligent Laboratory Systems, v. 2, p. 17–95.Google Scholar

Copyright information

© International Association for Mathematical Geology 2000

Authors and Affiliations

  • Irene M. Farnham
    • 1
  • Klaus J. Stetzenbach
    • 1
  • Ashok K. Singh
    • 2
  • Kevin H. Johannesson
    • 3
  1. 1.Harry Reid Center for Environmental StudiesUniversity of NevadaLas Vegas
  2. 2.Department of Mathematical SciencesUniversity of NevadaLas Vegas
  3. 3.Department of Ocean, Earth, and Atmospheric SciencesOld Dominion UniversityNorfolk

Personalised recommendations