Neurochemical Research

, Volume 25, Issue 6, pp 781–790 | Cite as

Calpain-PKC Inter-Relations in Mouse Hippocampus: A Biochemical Approach

  • Katia Touyarot
  • Sylvie Poussard
  • Catherine Verret
  • Bernadette Aragon
  • Patrick Cottin
  • Xavier Nogues
  • Jacques Micheau


In previous studies, we isolated and identified a μ-calpain/PKCα complex from rabbit skeletal muscle. Here, we have used specific purification procedures in order to study the interactions between μ-calpain and PKC in mouse hippocampus, a brain structure implicated in memory processes. We observed that μ-calpain and conventional PKCs (α, βII and γ) are co-eluted after anion exchange chromatography. In contrast to our previous results obtained on skeletal muscle, μ-calpain and PKC isoenzymes were dissociated after gel filtration chromatography. Furthermore, μ-calpain induced the proteolytic conversion of PKCα, βII, and γ into PKMα, βII, and γ with a preferential hydrolysis of PKCγ, a specific isoenzyme of the nervous system. Although the μ-calpain/PKC interactions in the hippocampus are quite different from skeletal muscle, our results however, point out the functional importance of these inter-relations. Moreover, as PKCγ has been involved in the biochemical events underlying learning and memory, the preferential relationship between μ-calpain and PKCγ promotes the importance of the role that μ-calpain could play in the cellular mechanisms of memory formation.

Calpain PKC PKM proteolysis hippocampus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bliss, T. V. P. and Collinbridge, G. L. 1993. A synaptic model of memory: long term potentiation in the hippocampus. Nature. 361:31-39.Google Scholar
  2. 2.
    Otani, S. and Ben Ari, Y. 1993. Biochemical correlates of long term potentiation hippocampal synapses. In. Rev. Neurobiol. 35:1-44.Google Scholar
  3. 3.
    Reymann, K. G. 1993. Mechanisms underlying synaptic long term potentiation in the hippocampus: focus on postsynaptic glutamate receptors and protein kinases, Funct. Neurol. Suppl., 5:7-32.Google Scholar
  4. 4.
    Nogues, X., Micheau, J. and Jaffard, R. 1994. Protein kinase C activity in the hippocampus following spatial learning tasks in mice. Hippocampus. 4:71-78.Google Scholar
  5. 5.
    Nogues, X., Micheau, J. and Jaffard, R. 1996a. Investigations on the role of hippocampal protein kinase C on memory processes: pharmacological approach. Behav. Brain. Res. 75:139-146.Google Scholar
  6. 6.
    Nogues, X., Micheau, J. and Jaffard R. 1996b. Correlations between hippocampal protein kinase C activity and learning abilities in a spatial reference memory task. Psychobiol. 24:1-8.Google Scholar
  7. 7.
    Van der Zee, E. A., Compaan, J. C., de Boer, M. and Luiten., P. G. M. 1992. Changes in PKC gamma immunoreactivity in mouse hippocampus induced by spatial discrimination learning. J. of Neurosci. 12:4808-4815.Google Scholar
  8. 8.
    Nishizuka, Y. 1995. Protein kinase C and lipid signaling for sustained cellular responses, FASEB J. 9:484-496.Google Scholar
  9. 9.
    Liu, J. P. 1996. Protein kinase C and its substrates. Molec. and Cell. Endocrinol. 116:1-29.Google Scholar
  10. 10.
    Nishizuka, Y. 1984. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature. 308: 693-695.Google Scholar
  11. 11.
    Kishimoto, A., Kajikawa, N., Shiota, M. and Nishizuka, Y. 1983. Proteolytic activation of calcium-activated, phospholipid dependent protein kinase by calcium dependent neutral protease. J. Biol. Chem. 258:1156-1164.Google Scholar
  12. 12.
    Kishimoto, A., Mikawa, K., Hashimoto, K., Yasuda, S., Tanaka, M., Tominaga, M., Kuroda, T. and Nishizuka, Y.. 1989. Limited proteolysis of protein kinase C subspecies by calcium-dependent protein neutral protease (calpain). J. Biol. Chem. 264:4088-4092.Google Scholar
  13. 13.
    Pontremoli, S., Michetti, M., Melloni, E., Sparatore, B., Salamino, F. and Horecker, H. L. 1990. Identification of the proteolytically activated forms of kinase C in stimulated human neutophils. Proc. Natl. Acad. Sci. USA. 87:3705-3707.Google Scholar
  14. 14.
    Croall, D. E. and Demartino, G. N. 1991. Calcium activated neutral protease calpain system: structure, function and regulation. Physiol. Rev. 71:813-847.Google Scholar
  15. 15.
    Melloni, E. and Pontremoli, S. 1989. The calpains. Trends Neurosci. 11:438-444.Google Scholar
  16. 16.
    Molinari, M. and Carafoli, E. 1997. Calpain a cytosolic proteinase active at the membranes. J. Membr. Biol. 156:1-8.Google Scholar
  17. 17.
    Sorimachi, H., Saido, T. C. and Susuki, K. 1994. New era of calpain research. Discovery of tissue specific calpains. FEBS lett. 343:1-5.Google Scholar
  18. 18.
    Goll, D. E., Thompson, V. F., Taylor, R. G. and Zalewska, T. 1992. Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin. BioEssays. 14:549-556.Google Scholar
  19. 19.
    Mellgren, R. L. 1987. Calcium-dependent proteases: an enzyme system active at cellular membranes? FASEB J. 1:110-115.Google Scholar
  20. 20.
    Pontremoli, S. 1996. Modulation of the calpain autoproteolysis by calpastatin and phospholipids. Biochem. Biophys. Res. Comm. 229:193-197.Google Scholar
  21. 21.
    Murray, A. W., Fournier, A. and Hardy, S. J. 1986. Proteolytic activation of protein kinase C: a physiological reaction. Trends. Neurol. Sci. 12:53-54.Google Scholar
  22. 22.
    Lang, D., Beermann, M-L., Hauser, G., Cressman, C. M., and Shea, T. B. 1995. Phospholipids inhibit proteolysis of protein kinase C? by mM calcium-requiring calpain Neurochem. Res. 11:1361-1364.Google Scholar
  23. 23.
    Cressman, C. M., Mohan, P. S., Nixon, R. A., and Shea, T. B. 1995. Proteolysis of protein kinase C: mM and ?M calcium-requiring calpains have different abilities to generate and degrade the free catalytic subunit protein. FEBS Lett. 367:223-227.Google Scholar
  24. 24.
    Shea, T. B., Beermann, M. L., Griffin W. R. and Leli, U. 1994 b. Degradation of PKC? ant its free catalytic subunit, protein kinase M, in intact human neuroblastoma cells and under free conditions evidence that PKM is degraded by calpain mediated proteolysis at a faster rate than PKC. FEBS Lett. 350:223-229.Google Scholar
  25. 25.
    Nixon, R. A. 1989. Calcium, Membranes, Aging and Alzheimer's diseases. Ann. N.Y. Acad. Sci. 568:198-208.Google Scholar
  26. 26.
    Shea, T. B., Spencer, M. J., Beermann, M. L., Cressman, C. M. and Nixon, R. A. 1996. Calcium influx into human neuroblastoma cells induces Alz 50 immunoreactivity: Involvement of calpain mediated hydrolysis of protein kinase C. J. of Neurochem. 66:1539-1549.Google Scholar
  27. 27.
    Hrabetova, S., Sacktor, TC. 1996. Bidirectional regulation of protein kinase M zeta in the maintenance of long-term potentiation and long term depression. J. Neurosci. 16:5324-5333.Google Scholar
  28. 28.
    Sacktor, T. C., Osten, P., Valsamis, H., Jiang, X., Naik, M., U. and Sublette, E. 1993. Persistent activation of the ? ?isoform of protein kinase C in the maintenance of long term potentiation. Proc Natl Acad. Sci. USA. 90:8342-8346.Google Scholar
  29. 29.
    Savart, M., Verret, C., Dutaud, D., Touyarot, K., Elamrani, N. and Ducastaing A. 1996. Isolation and identification of a ?-calpain-PKC? complex in skeletal muscle. FEBS Lett. 359:60-64.Google Scholar
  30. 30.
    Wolfe, F. H., Satle, S. K., Goll., D. E., Kleese, W. C., Edmunds, T. and Duperret, S. M. 1989. Chicken skeletal muscle has three Ca2+-dependent proteinase. Biochem. Biophys. Acta, 998:236-250.Google Scholar
  31. 31.
    Twinings, S. S. 1984. Fluorescein isothiocyanate-labeled casein assay for proteolytic enzymes. Anal. Biochem. 143:30-34.Google Scholar
  32. 32.
    Savart, M., Letard, P., Bultel, S. and Ducastaing, A. 1992. Induction of protein kinase C downregulation by the phorbol esters TPA in a calpain/protein kinase C complex. Int. J. Cancer. 52:399-403.Google Scholar
  33. 33.
    Laemmli, U. K. 1970. Cleavage of structure protein during the assembly of the head of bacteriophage T4. Nature. 227:680-685.Google Scholar
  34. 34.
    Shu, S. Y., Ju, G. and Fan, L. Z. 1988. The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci. Lett. 85:169-171.Google Scholar
  35. 35.
    Cottin, P., Brustis, J. J, Poussard, S., Elamrani, N., Broncard, S. and Ducastaing, A. 1994. Calcium dependent proteases (calpains) and muscle cell differenciation. Biochem. Biophys. Acta, 1079:139-145.Google Scholar
  36. 36.
    Siman, R. and Noszek, J. C. 1988. Excitatory aminoacids activate calpain I and induce structural protein breakdown in vivo. Neuron. 1:279-287.Google Scholar
  37. 37.
    Cottin, P., Azanza, J. L., Vidalenc, P., Ducastaing, A., Valin C. and Ouali, A. 1981. Characterization and purification of a Ca2+ ion activated neutral protease inhibitor. Reprod. Nutr. Devel. 21:309-317.Google Scholar
  38. 38.
    Savart, M., Belamri, M., Pallet, V., and Ducastaing, A. 1987. Association of calpains 1 and 2 with protein kinase C activities. FEBS lett. 216:22-26.Google Scholar
  39. 39.
    Siman, R., Baudry, M., and Lynch G. 1983. Purification from synaptosomal plasma membranes of calpain 1 a thiol paroteases activated by micromolar calcium concentrations. J. Neurochem. 41:950-956.Google Scholar
  40. 40.
    Johnson, M. S., Simpson, J., MacEwan, D. J., Ison, A., Clegg, R. A., Connor, K. and Mitchell, R. 1995. Phorbol ester and diacylglycerol activation of native protein kinase C species from various tissues. Mol. Cell. Biochem. 146:127-137.Google Scholar
  41. 41.
    Pears, C., Stabel, S., Cazaubon, S. and Parker, P. J. 1992. Studies on the phosphorylation of protein kinase C?. Biochem. J. 283:515-518.Google Scholar
  42. 42.
    Borner, C., Fillipuzzi, I, Wartman, M., Eppenberger, U. and Fabbro, D. 1989. Biosynthesis and post-translational modications of protein kinase C in human breast cancer cells. J. Biol. Chem. 264:13902-13909.Google Scholar
  43. 43.
    Cazaubon, S., Bornancin, F. and Parker, P. J. 1994. Threonine-497 is a critical site for permissive activation of protein kinase C? Biochem. J. 301:443-448.Google Scholar
  44. 44.
    Verret, C., Poussard, S., Touyarot, K., Donger, C., Savart, M., Cottin, P. and Ducastaing, A. 1999. Regulation of PKC? and PKM? by ?-calpain in a ?-calpain-PKC? complex. Biochem. Biophys. Acta. 1430:141-148.Google Scholar
  45. 45.
    Nishizuka, Y., 1988, Localization of subspecies of protein kinase C in the mammalian central nervous system. Nature. 334:661-665.Google Scholar
  46. 46.
    Van der Zee, E. A., Compaan, J. C., de Boer, M. and Luiten, P. G. M. 1992. Changes in PKC gamma, immunoreactivity in mouse hippocampus induced by spatial discrimination learning. J. Neurosci. 12:4808-4815.Google Scholar
  47. 47.
    Luiten, P. G. M., Van der Zee, E. A., Beldhuis, H. J. A., Rozendaal, B., and Cazaubon, S. 1991. Differential changes in protein kinase C expression in rat cortex, hippocampus and amygdala determined by type of learning task. Soc. Neurosci. Abstr. 17:1396.Google Scholar
  48. 48.
    Muller, D., Molinari, I., Soldati, L., Bianchi, G., 1995. A genetic deficiency in calpastatin and isovaleryl carnitine treatment is associated with enhanced hippocampal long term potentiation. Synapse. 19:37->45.Google Scholar
  49. 49.
    Del Cerro, S., Larson, J., Oliver, M. W., and Lynch, G. 1990. Development of hippocampal long term potentiation is reduced by recently introduced calpain inhibitors. Brain Res. 530:91-95.Google Scholar
  50. 50.
    Staubli, U., Larson, J., Thibault, O., Baudry, M. and Lynch, G. 1988. Chronic administration of a thiol proteinase inhibitor blocks long term potentiation of synaptic responses. Brain Res. 444:153-158.Google Scholar
  51. 51.
    Vanderklish, P., Bednarski, E. and Lynch, G. 1996. Translational suppression of calpain blocks long term potentiation. Learn. and Mem. 3:209-217.Google Scholar
  52. 52.
    Hamakubo, T., Kannaji, R., Murachi, T. and Matus A. 1986. Distribution of calpain I and II in rat brain. J. Neurosci. 6:3103-3111.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Katia Touyarot
    • 1
    • 2
  • Sylvie Poussard
    • 1
  • Catherine Verret
    • 1
  • Bernadette Aragon
    • 1
  • Patrick Cottin
    • 1
  • Xavier Nogues
    • 2
  • Jacques Micheau
    • 3
  1. 1.ISTAB, Laboratoire de Biochimie et Technologie des AlimentsUniversité Bordeaux I, UA-INRA 429Talence CedexFrance
  2. 2.Laboratoire de Neurosciences CognitivesUniversité Bordeaux I, CNRS-UMR 5807Talence CedexFrance
  3. 3.Laboratoire de Neurosciences CognitivesUniversité Bordeaux I, CNRS-UMR 5807Talence CedexFrance

Personalised recommendations