Neurochemical Research

, Volume 25, Issue 7, pp 971–975 | Cite as

Preconditioning Prevents the Inhibition of Na+,K+-ATPase Activity after Brain Ischemia

  • Angela Terezinha de Souza Wyse
  • Emílio Luiz Streck
  • Paulo Worm
  • André Wajner
  • Fabiana Ritter
  • Carlos Alexandre Netto


Application of single transient forebrain ischemia (ISC) in adult Wistar rats, lasting 2 or 10 min, caused inhibition of Na+,K+-ATPase activity in cytoplasmic membrane fractions of hippocampus and cerebral cortex immediately after the event. In the 2-min ISC group followed by 60 min of reperfusion, the enzyme inhibition was maintained in the cortex, while there was an increase in hippocampal enzyme activity; both effects were over 1 day after the event. However, in the 10-min ISC group enzyme inhibition had been maintained for 7 days in both cerebral structures. Interestingly, ischemic preconditioning (2-min plus 10-min ISC, with a 24-hour interval in between) prevented the inhibitory effect of ischemia/reperfusion on Na+,K+-ATPase activity observed either after a single insult of 2 min or 10 min ischemia. We suggest that the maintenance of Na+,K+-ATPase activity afforded by preconditioning be related to cellular neuroprotection.

Na+,K+-ATPase brain ischemia ischemic preconditioning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Siesjo, B. K. 1988. Mechanism of ischemic brain damage. Crit. Care. Med. 16:954–962.Google Scholar
  2. 2.
    Ericinska, M., and Silver, I. A. 1994. Ions and energy in mammalian brain. Prog. Neurobiol. 43:37–71.Google Scholar
  3. 3.
    Lees, G. J. 1991. Inhibition of sodium-potassium-ATPase: a potentially ubiquitous mechanism contributing to central nervous system neuropathology. Brain Res. Rev. 16:283–300.Google Scholar
  4. 4.
    Schmidt-Kastner, R., and Freund, T. F. 1991. Selective vulnerability of the hippoccampus in brain ischaemia. Neuroscience. 40:599–636.Google Scholar
  5. 5.
    Kirino, T., Tsujita, Y., and Tamura, A. 1991. Induced tolerance in gerbil hippocampal neurons. J. Cereb. Flow Metab. 11:299–307.Google Scholar
  6. 6.
    Goplerud, J. M., Mishra, O. P., and Delivoria-Papadopoulos, M. 1992. Brain cell membrane dysfunction following acute asphyxia in newborn piglets. Biol. Neonate, 61:33–41.Google Scholar
  7. 7.
    Nagafuji, T., Koide, T., and Takato M. 1992. Neurochemical correlates of selective neuronal loss following cerebral ischemia: role of decreased Na, K-ATPase activity. Brain Res. 571:265–271.Google Scholar
  8. 8.
    MacMillan, V. 1982. Cerebral Na, K-ATPase activity during exposure to and recovery from acute ischemia. J. Cereb. Blood Flow Metabol. 2:457–465.Google Scholar
  9. 9.
    Netto, C. A., Hodges, H., Sinden, J. D., Lepillet, E., Kershaw, T., Sowinski, P., Meldrum, B. S., and Gray, J. A. 1993. Effects of fetal hippocampal field grafts on ischaemia-induced deficits in spatial navigation on the water maze. Neuroscience, 54:69–92.Google Scholar
  10. 10.
    Schetinger, M. R. C., Bonan, C. D., Schierholt, R. C., Webber, A., Arteni, N., Emanuelli, T., Dias, R. D., Sarkis, J. J. F., and Netto, C. A. 1998. Nucleotide hydrolysis in rats submitted to global cerebral ischemia: a possible link between preconditioning and adenosine production. J. Stroke Cerebrovasc. Dis. 7:281–286.Google Scholar
  11. 11.
    Jones, D. H., and Matus, A. I. 1974. Isolation of synaptic plasma membrane from brain by combination flotation-sedimentation density gradient centrifugation. Biochim. Biophys. Acta, 356-:276–287.Google Scholar
  12. 12.
    Tsakiris, S., and Deliconstantinos, G. 1984. Influence of phosphatidylserine on (Na++ K+)-stimulated ATPase and acetylcholinesterase activities of dog brain synaptosomal plasma membranes. Biochem. J. 22:301–307.Google Scholar
  13. 13.
    Chan, K. M., Delfert, D., and Junger, K. D. 1986. A direct colorimetric assay for Ca2+ stimulated ATPase activity. Anal. Biochem. 157:375–380.Google Scholar
  14. 14.
    Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-die binding. Anal. Biochem. 72:248–254.Google Scholar
  15. 15.
    Schmidley, J. W. 1990. Free radicals in central nervous system ischemia. Stroke, 21:1086–1090.Google Scholar
  16. 16.
    Chong P. L. G., Fortes P. A. G, and Jameson D. M. 1985. Mechanisms of inhibition of (Na+ + K+)-ATPase by hydrostatic pressure studied with fluorescent probes. J. Biol. Chem. 260: 14480–14490.Google Scholar
  17. 17.
    Sandermann Jr., H. 1978. Regulation of membrane enzyme by lipids. Biochim. Biophys. Acta, 515:209–237.Google Scholar
  18. 18.
    Enseleit, W. H., Domer, F. R., Jarrott, D. M., and Baricos, W. H.1984. Cerebral phospholipid content and Na,K-ATPase activity during ischemia and post-ischemic reperfusion in gerbils. J. Neurochem. 43:320–327.Google Scholar
  19. 19.
    Bertorello, A. M., and Kats, A. L. 1995. Regulation of Na+-K+-Pump activity: pathways between receptors and effectors. NIPS, 10:253–259.Google Scholar
  20. 20.
    Brines, M. L., and Robbins, R. J. 1992. Inhibition of ?2/?3 sodium pump isoforms potentiates glutamate neurotoxicity. Brain Res. 591:94–102.Google Scholar
  21. 21.
    Schwartz, J. P., Mrsulja, B. B., Passonneau, J. V., and Klatzo, I.1976. Alteration of cyclic nucleotide-related enzymes and ATPase during unilateral ischemia and recirculation in gerbil cerebral cortex. J. Neurochem. 27:101–107.Google Scholar
  22. 22.
    Racay, P., Bezáková, G., Kaplán, P., Lehotsky J., and Mézesová, V. 1994. Alteration in rabbit brain endoplasmatic reticulum Ca2+ transport by free oxygen radicals in vitro. Biochem. Biophys. Res. Commun. 199:63–69.Google Scholar
  23. 23.
    Matejovicová, M., Machác, S., Lehotsky, J., Jakus, J., and Mézesová, V. 1996. Synaptosomal Na, K-ATPase during forebrain ischemia in mongolian gerbils. Mol. Chem. Neuropathol. 29:68–78.Google Scholar
  24. 24.
    Bruer, U., Weih, M. K., Isaev, N. K., Meisel, A., Ruscher, K., Bergk, A., Trendelenburg, G., Wiegand, F., Victorov, I. V., and Dirnagi, U. 1997. Induction of tolerance in rat cortical neurons: hypoxic preconditioning. FEBS Lett. 414:117–121.Google Scholar
  25. 25.
    Rudolphi, K. A., Schubert, P., Parkinson, F. E., And Fredholm, B. B. 1992. Neuroprotective role of adenosine in cerebral ischaemia. Trends Pharmacol. Sci. 3:439–445.Google Scholar
  26. 26.
    Ramkumar, V., Rybak, L. P., and Maggirwar, S. B. 1995. Adenosine, antioxidant enzymes and cytoprotection. TIPS, 16:283–285.Google Scholar
  27. 27.
    Turkozkan, N., Aykol, S., Bilgihan, A., Yavuz, O., Çayci, B., and Dogulu, F. 1996. The effect of 2-chloroadenosine on the ATP level Na, K-ATPase activity in experimental brain ischemia of gerbil. Gen. Pharmac. 27:165–166.Google Scholar
  28. 28.
    Gluckman, P. D., Klempt, N., Guan, J., Mallard, C., Sirimanne, E., Dragunow, M., Klemp, M., Singh, K., Willians, C. E., and Nicolics, K. 1992. A role for IGF-1 in the rescue of CNS neurons following hypoxic-ischemic injury. Biochim. Biophys. Res. Commun. 182:593–599.Google Scholar
  29. 29.
    Matsuda, T., Murata, Y., Tanaka, K., Hosoi, R., Hayashi, M., Tamada, K., Takuma, K., and Baba, A. 1996. Involvement of Na, K-ATPase in the mitogenic effect of insulin-like growth factor-I on cultured rat astrocytes. J. Neurochem. 66:511–516.Google Scholar
  30. 30.
    Phillis, J. W., Wu, P. H., and Thierry, D. L. 1982. The effect of alpha-beta adrenergic receptor agonists and antagonists on the efflux of 22Na and uptake of 42K by rat brain cortical slices. Brain Res. 236:133–142.Google Scholar
  31. 31.
    Banerjee, A., Loocke-Winter, C. and Rogers, K. B., Mitchell, M. B., Brew, E. C., Cairns, C. B., Bensard, D. D., and Harken, A. H. 1993. Preconditioning against myocardial dysfunction after ischemia and reperfusion by an ?-1-adrenergic mechanism. Circ. Res. 28:1726–1734.Google Scholar
  32. 32.
    Ravingerová, T., Barancik, M., Pancza, D., Styk, J., Ziegelhoffer, A., Schaper, W., and Slezák, J. 1996. Contribution to the factors involved in the protective effect of ischemic preconditioning. Ann. N.Y. Acad. Sci. 793:43–53.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Angela Terezinha de Souza Wyse
    • 1
  • Emílio Luiz Streck
    • 2
  • Paulo Worm
    • 2
  • André Wajner
    • 2
  • Fabiana Ritter
    • 2
  • Carlos Alexandre Netto
    • 2
  1. 1.Departamento de Bioquímica, ICBSUniversidade Federal do Rio Grande do SulPorto Alegre, RSBrazil
  2. 2.Departamento de Bioquímica, ICBSUniversidade Federal do Rio Grande do SulPorto Alegre, RSBrazil

Personalised recommendations