Skip to main content
Log in

Scinderin, a Ca2+-Dependent Actin Filament Severing Protein that Controls Cortical Actin Network Dynamics During Secretion

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Secretory vesicles are localized in specific compartments within neurosecretory cells. These are different pools in which vesicles are in various states of releasability. The transit of vesicles between compartments is controlled and regulated by Ca2+, scinderin and the cortical F-actin network. Cortical F-actin disassembly is produced by the filament severing activity of scinderin. This Ca2+-dependent activity of scinderin together with its Ca2+-independent actin nucleating activity, control cortical F-actin dynamics during the secretory cycle. A good understanding of the interaction of actin with scinderin and of the role of this protein in secretion has been provided by the analysis of the molecular structure of scinderin together with the use of recombinant proteins corresponding to its different domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Trifaró , J-M. 1997. Common mechanisms of hormone secretion. Ann. Rev. Pharmacol. Toxicol. 17:27-47.

    Google Scholar 

  2. Trifaró , J-M., and Poisner, A. M. 1982. Common properties in the mechanisms of synthesis, processing and storage of secretory products. Pages 387-407, in Poisner, A. M., and Trifaró , J-M. (eds.) The Secretory Process. The Secretory Granule. Elsevier/North Holland.

  3. Heinemann, C., von Rüden, L., Chow, R. H., and Neher, E. 1983. A two-step model of secretion control in neuroendocrine cells. Pflugers Arch-Eur. J. Physiol. 424:105-112.

    Google Scholar 

  4. Neher, E., and Zucker, R. S. 1993. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10:21-30.

    Google Scholar 

  5. Vitale, M. L., Seward, E. P., and Trifaró , J-M. 1995. Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron, 14:353-363.

    Google Scholar 

  6. Vitale, M. L., Rodríguez Del Castillo, A., Tchakarov, L., and Trifaró , J-M. 1991. Cortical filamentous actin disassembly and scinderin redistribution during chromaffin cell stimulation precede exocytosis, a phenomenon not exhibited by gelsolin. J. Cell Biol. 113:1057-1067.

    Google Scholar 

  7. Burgoyne, R. D., Geisow, M. J., and Barron, J. 1982. Dissection of stages in exocytosis in the adrenal chromaffin cells with use of trifluoperazine. Proc. R. Soc. Lond.(B)216:111-115.

    Google Scholar 

  8. Parsons, T. D., Coorssen, J. R., Horstmann, H., and Almers, W. 1995. Docked granules, the exocytotic burst, and the need for ATP hydrolysis in endocrine cells. Neuron 15:1085-1096.

    Google Scholar 

  9. Bittner, M. A., and Holz, R. W. 1992. Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components. J. Biol. Chem. 267:16219-16225.

    Google Scholar 

  10. Sudhof, T. C., and Jahn, R. 1991. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 6:665-677.

    Google Scholar 

  11. Bommert, K., Charlton, M. P., DeBello, W. M., Chin, G. J., Betz, H., and Augustine, G. J. 1993. Inhibition of neurotransmitter release by C 2-domain peptides implicates synaptotagmin in exocytosis. Nature 363:163-165.

    Google Scholar 

  12. Popov, S. V., and Poo, M. M. 1993. Synaptotagmin: a calcium-sensitive inhibitior of exocytosis? Cell 73:1247-1249.

    Google Scholar 

  13. Alvarez de Toledo, G., Fernández-Chacó n, R., and Fernández, J. M. 1993. Release of secretory products during transient vesicle fusion. Nature 363:554-557.

    Google Scholar 

  14. Trifaró , J-M., and Vitale, M. L. 1993. Cytoskeleton dynamics during neurotransmitter release. Trends Neurosci. 16:466-472.

    Google Scholar 

  15. Trifaró , J-M. 1982. The cultured chromaffin cell: a model for the study of biology and pharmacology of paraneurons. Trends in Pharmacol. Sci. 3:389-392.

    Google Scholar 

  16. Trifaró , J-M. 1984. The adrenal paraneuron, its biology and pharmacology. Can. J. Physiol. Pharmacol. 62:465-466.

    Google Scholar 

  17. Douglas, W. W. 1968. Stimulus-secretion coupling: The concept and clues from chromaffin and other cells. Br. J. Pharmacol. 34:451-474.

    Google Scholar 

  18. Douglas, W. W., and Rubin, R. P. 1961. The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J. Physiol. 159:40-57.

    Google Scholar 

  19. Harvey, D. G., and MacIntoch, F. C. 1940. Calcium and synaptic transmission in a sympathetic ganglion. J. Physiol. 97:408-418.

    Google Scholar 

  20. Houssay, B. A., and Molinelli, E. A. 1928. Excitabilité des fibres adrénalino-sécrétories du neuf grand splanchnique: fréquences, seuil et optimum des stimulus: rô le de l'ion calcium. C. R. Seances Soc. Biol. Ses Fil. 99:172-174.

    Google Scholar 

  21. Jockush, B. M., Burger, M. M., Da Prada, M., Richards, J. G., Chaponnier, C., and Gabbiani, G. 1977. α-actinin attaches to membranes of secretory vesicles. Nature 270:628-629.

    Google Scholar 

  22. Trifaró , J-M., Bader, M-F., and Doucet, J. P. 1985. Chromaffin cell cytoskeleton: its possible role in secretion. Can. J. Biochem. Cell Biol. 63:661-679.

    Google Scholar 

  23. Bader, M-F., Trifaró , J-M., Langley, O. K., Thiersé, D., and Aunis, D. 1986. Secretory cell actin-binding proteins identification of gelsolin-like protein in chromaffin cells. J. Cell Biol. 102:636-646.

    Google Scholar 

  24. Rodríguez Del Castillo, A., Lemaire, S., Tchakarov, L., Jeyapragasan, M., Doucet, J. P., Vitale, M. L., and Trifaró , J-M. 1990. Chromaffin cell scinderin: a novel calcium-dependent actin filament severing protein. EMBO J. 9:43-52.

    Google Scholar 

  25. Yin, H., and Stossel, T. P. 1979. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium dependent regulatory protein. Nature 281:583-586.

    Google Scholar 

  26. Yin, H., Albrecht, and J. H., Fattoum, A. 1981. Identification of gelsolin, a calcium-dependent regulatory protein of actin gel-sol transformation and its intracellular distribution in a variety of cells and tissues. J. Cell Biol. 91:901-906.

    Google Scholar 

  27. Stossel, T. P., Chaponnier, C., Ezzel, R., Hartwig, J. H., Janmey, P. A., Kwiatowski, D. J., Lind, S. E., Smith, D. B., Southwick, F. S., and Yin, H. L. 1985. Non-muscle actin binding proteins. Ann. Rev. Cell Biol. 1:353-402.

    Google Scholar 

  28. Tchakarov, L., Vitale, M. L., Jeyapragasan, M., Rodríguez Del Castillo, A., and Trifaró , J-M. 1990. Expression of scinderin, an actin filament-severing protein, in different tissues. FEBS Lett. 268:209-212.

    Google Scholar 

  29. Rodríguez Del Castillo, A., Vitale, M. L., Tchakarov, L., and Trifaró , J-M. 1992. Human platelets contain scinderin, a calcium dependent actin filament-severing, protein. Thromb. Haemost. 67:248-251.

    Google Scholar 

  30. Vitale, M. L., Rodríguez Del Castillo, A., and Trifaró , J-M. 1992. Loss and Ca2+-dependent retention of scinderin in digitonin-permeabilized chromaffin cells: correlation with Ca2+-evoked catecholamine release. J. Neurochem. 59:1717-1728.

    Google Scholar 

  31. Marcu, M. G., Rodríguez Del Castillo, A., Vitale, M. L., and Trifaró , J-M. 1994. Molecular cloning and functional expression of chromaffin cell scinderin indicates that it belongs to the family of Ca2+-dependent F-actin severing proteins. Mol. Cell. Biochem. 141:153-165.

    Google Scholar 

  32. Andre, E., Lottspeich, F., Schleicher, M., and Noegel, A. 1988. Severin, gelsolin and villin share a homologous sequence in regions presumed to contain F-actin severing domains. J. Biol. Chem. 263:722-728.

    Google Scholar 

  33. Ampe, C., and Vandekerchove, J. 1987. The F-actin capping proteins of Physarum polydephalum: cap42(a) is very similar if not identical to fragmin and is structurally and functionally very homologous to gelsolin: cap42(b) is Phisarum actin. EMBO J. 6:4149-4157.

    Google Scholar 

  34. Way, M., and Weeds, A. 1988. Nucleotide sequence of pig plasma gelsolin. Comparison of protein sequence with human gelsolin and other actin-severing proteins shows strong homologies and evidence for large internal repeats. J. Mol. Biol. 203:1127-1133.

    Google Scholar 

  35. McLaughlin, P. J., Gooch, J. T., Mannherz, H-G., and Weeds, A. G. 1993. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature 364:685-692.

    Google Scholar 

  36. Way, M., Pope, B. and Weeds, A. G. 1992. Evidence for functional homology in the F-actin binding domains of gelsolin and alfa actinin: implications for the requirements of severing and capping. J. Cell Biol. 119:835-842.

    Google Scholar 

  37. Trifaró , J-M., Rodríguez Del Castillo, A., and Vitale, M. L. 1992. Dynamic changes in chromaffin cell cytoskeleton as prelude to exocytosis. Mol. Neurobiol. 6:339-358.

    Google Scholar 

  38. Pope, B., Way, M., and Weeds, A. G. 1991. Two of the three actin binding domains of gelsolin bind to the same subdomain of actin. FEBS Lett. 280:70-74.

    Google Scholar 

  39. Huber, R., Schneider, M., Mayr, J., Römisch, J., and Paques, E. P. 1990. The calcium binding sites in human annexin V by crystal structure analysis at 2.0 Å resolution. FEBS Lett. 275:15-24.

    Google Scholar 

  40. Chaponnier, C., Janmey, P., and Yin, H. 1986. The actin filament severing domain of plasma gelsolin. J. Cell Biol. 103:1473-1481.

    Google Scholar 

  41. Bryan, J. 1988. Gelsolin has 3 actin binding sites. J. Cell Biol. 106:1553-1562.

    Google Scholar 

  42. Marcu, M. G., Zhang, L., Elzagallaai, A., and Trifaró , J-M. 1998. Localization by segmental deletion analysis and functional characterization of a third actin-binding site in domain 5 of scinderin. J. Biol. Chem. 273:3661-3668.

    Google Scholar 

  43. Rodríguez Del Castillo, A., Vitale, M. L., and Trifaró , J-M. 1992. Ca2+and pH determine the interaction of chromaffin cell scinderin with phosphatidylserine and phosphatidylinositol 4,5-bisphosphate and its cellular distribution during nicotinic-receptor stimulation and protein kinase C activation. J. Cell Biol. 119:797-810.

    Google Scholar 

  44. Maekawa, S., and Sakai, H. 1990. Inhibition of actin regulatory activity of the 74-kDa protein from bovine adrenal medulla (adseverin) by some phospholipids. J. Biol. Chem. 265:10940-10942.

    Google Scholar 

  45. Hartwig, J. H., Bokoch, G. M., Carpenter, C. L., Janmey, P. A., Taylor, L. A., Toker, A., and Stossel, T. P. 1995. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82:643-653.

    Google Scholar 

  46. Rhee, S. G., Suh, P. G., Ryu, S. H., and Sang, Y. L. 1989. Studies of inositol phospholipid-specific phospholipase C. Science 244:546-550.

    Google Scholar 

  47. Yu, F-X, Sun, H-Q., Janmey, P. A., Yin, H. L. 1992. Identification of a polyphosphoinositide-binding sequences in an actin monomer-binding domain of gelsolin. J. Biol. Chem. 267: 14616-14621.

    Google Scholar 

  48. Janmey, P. A., Lamb, J., Allen, P. G., and Matsudaira, P. T. 1992. Phosphoinositide binding peptides derived from the sequences of gelsolin and villin. J. Biol. chem. 267:11818-11823.

    Google Scholar 

  49. Zhang, L., Marcu, M. G., Nau-Staudt, K., and Trifaró , J-M. 1996. Recombinant scinderin enhances exocytosis, an effect blocked by two scinderin-derived actin-binding peptides and PIP2. Neuron 17:287-296.

    Google Scholar 

  50. Marcu, M. G., Zhang, L., Nau-Staudt, K., and Trifaró , J-M. 1996. Recombinant scinderin, an F-actin severing protein, increases calcium-induced release of serotonin from permeabilized platelets, an effect blocked by two scinderin-derived actin-binding peptides and phosphatidylinositol 4,5-bisphosphate. Blood 87:20-24.

    Google Scholar 

  51. MacLean-Fletcher, S. D., and Pollard, T. D. 1980. Viscometric analysis of the gelation of Acanthamoeba extracts and purification of two gelation factors. J. Cell Biol. 85:414-428.

    Google Scholar 

  52. Caldwell, P. C. 1970. Pages 10-16 in Cuthbert, A. W. (ed.) Calcium and Cellular Function. Macmillan and Co. Ltd., London.

    Google Scholar 

  53. Trifaró , J-M., and García, A. G. 1995. Pages 281-292 in Cuello, A. C., and Collier, B. (eds.) Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s. Molecular and cellular mechanisms in neurosecretion. Birkhäuser Verlag Basel Switzerland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trifaró, JM., Rosé, S.D. & Marcu, M.G. Scinderin, a Ca2+-Dependent Actin Filament Severing Protein that Controls Cortical Actin Network Dynamics During Secretion. Neurochem Res 25, 133–144 (2000). https://doi.org/10.1023/A:1007503919265

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007503919265

Navigation