Advertisement

International Journal of Fracture

, Volume 89, Issue 2, pp 103–116 | Cite as

Stress Intensity factor, compliance and CMOD for a General Three-Point-Bend Beam

  • G. V. Guinea
  • J. Y. Pastor
  • J. Planas
  • M. Elices
Article

Abstract

New simple and general expressions for the stress intensity factor, compliance and crack mouth opening displacement for three-point bend specimens are computed. Inverse functions giving the crack length as a function of load-point displacement or crack mouth opening displacement are also included. The expressions are valid for any crack length and for any span-to-depth ratio larger than 2.5. The expressions are checked by comparing them to direct finite element computations and to available expressions by other authors. The accuracy of the new expression is equal to or better than available formulas when compared with finite element computations, and its range of applicability is much larger. Moreover, all the new expressions exhibit the correct asymptotic behaviour for very shallow and very deep cracks.

Stress intensity factor compliance CMOD the-point-bend specimen. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASTM (1993a). Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, in 1993 Annual Book of ASTM Standards,Section 3, E 399-90. Philadelphia, PA, USA 509-539.Google Scholar
  2. ASTM (1993b). Standard Test Method for JIC, a Measure of Fracture Toughness, in 1993 Annual Book of ASTM Standards,Section 3, E 813-89. Philadelphia, PA, USA 738-752.Google Scholar
  3. Bakker, A. (1995). Evaluation of elastic fracture mechanics parameters for bend specimens, International Journal of Fracture 71, 323-343.CrossRefADSGoogle Scholar
  4. Benthem, J.P. and Koiter, W.T. (1973). Asymtotic Approximations to Crack Problems, Chap. 3 in Mechanics of Fracture: I. Methods of Analysis of Crack Problems (Edited by G. C. Sih), Noordhoff International Publishing, Leyden, The Netherlands 131-178.Google Scholar
  5. Broek, D. (1986). Elementary Engineering Fracture Mechanics,Kluwer Academic Publishers, Dordrecht, The Netherlands.zbMATHGoogle Scholar
  6. Brown, W.F. and Srawley, J.E. (1966). Plane Strain Crack Testing of High Strength Metallic Materials, in Plane Strain Crack Testing of High Strength Metallic Materials, ASTM Special Technical Publication No. 410, 1-30.Google Scholar
  7. ESIS, (1992). Procedure for Determining the Fracture Behaviour of Materials, ESISPI-92, European Structural Integrity Society, Delft, The Netherlands.Google Scholar
  8. Gettu, R., Bažant, Z.P. and Karr, M.E. (1990). Fracture properties and brittleness of high-strength concrete, ACI Materials Journal 87, 608-618.Google Scholar
  9. Gross, B. and Srawley, J.E. (1965). Stress-Intensity Factors for Single-Edge-Notch Specimens in Bending or Combined Bending and Tension by Boundary Collocation of a Stress Function. Technical Note D-2603, NASA, 1-15.Google Scholar
  10. Murakami, Y. (1986). Stress Intensity Factors Handbook,Pergamon, New York.Google Scholar
  11. Paris, P.C. (1957). The Mechanics of Fracture Propagation and Solutions to Fracture Arrester Problems. Document D2-2195, The Boeing Company.Google Scholar
  12. Pastor, J.Y., Guinea, G.V., Planas, J. and Elices, M. (1995). Nueva expresión del factor de intensidad de tensiones para la probeta de flexión en tres puntos, Anales de Mecánica de la Fractura 12, 85-90 (in Spanish).Google Scholar
  13. Planas, J., Guinea, G.V. and Elices, M. (1994). Stiffness Associated with Quasi-Concentrated Loads, Materials and Structures 27, 311-318.CrossRefGoogle Scholar
  14. RILEM, (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams, Draft Recommendation, Materials and Structures 18, 285-290.CrossRefGoogle Scholar
  15. Rooke, D.P. and Cartwright, D.J. (1976). Compendium of Stress Intensity Factors,HerMajesty's Stationery Office, London.Google Scholar
  16. Shang-Xian, Wu. (1984). Crack length calculation formula for three pont bend specimens, Engineering Fracture Mechanics 19, 221-232.CrossRefGoogle Scholar
  17. Srawley, J.E. (1976). Wide Range Stress Intensity Factor Expressions for ASTM E399 Standard Fracture Toughness Specimens, International Journal of Fracture 12, 475-476.Google Scholar
  18. Srawley, J.E. and Gross, B. (1972). Stress Intensity Factors for Bend and Compact Specimens, Engineering Fracture Mechanics 4, 587-589.CrossRefGoogle Scholar
  19. Tada, H., Paris, P.C. and Irwin, G.R. (1985). The Stress Analysis of Cracks Handbook,Paris Productions Incorporated, St. Louis, Missouri, USA.Google Scholar
  20. Timoshenko, S. and Goodier, J.N. (1951). Theory of Elasticity,McGraw-Hill, New York, 128-133.Google Scholar
  21. Underwood, J., Kapp, J.A. and Baratta, F.I. (1985). More on the compliance of the Three-Point bend specimens, International Journal of Fracture 28, R41-R45.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • G. V. Guinea
    • 1
  • J. Y. Pastor
    • 1
  • J. Planas
    • 1
  • M. Elices
    • 1
  1. 1.Department de Ciencia de Materials, ETSI CaminosUniversidad Politécnica de MadridMadridSpain

Personalised recommendations