Plant Molecular Biology Reporter

, Volume 15, Issue 4, pp 326–334 | Cite as

A Conserved Motif in the 5.8S Ribosomal RNA (rRNA) Gene is a Useful Diagnostic Marker for Plant Internal Transcribed Spacer (ITS) Sequences

  • David V. Jobes
  • Leonard B. Thien
Article

Abstract

The nuclear ribosomal DNA (rDNA) internal transcribed spacer (ITS) region has become an important nuclear locus for molecular systematic investigations of angiosperms at the intergenic and interspecific levels. Universal PCR primers are positioned on the conserved rRNA genes (18S, 5.8S, 26S) to amplify the entire ITS spacer region. Recent reports of fungal and algal contaminants, first described as plant ITS sequences, stress the need for diagnostic markers specific for the angiosperm ITS region. This report describes a conserved 14 base pair (bp) motif in the 5.8S rRNA gene that can be used to differentiate between flowering plants, bryophytes, and several orders of algae and fungi, including common plant pathogenic and non-pathogenic fungi. A variant of the motif (found in fungi and algae) contains a convenient EcoRI restriction site that has several applications for eliminating problematic contaminants from plant ITS preparations.

5.8S rRNA ITS phylogenetics angiosperms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S. F., W. Gish, W. Miller, E.W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.Google Scholar
  2. Baldwin, B. G., M. J. Sanderson, J. M. Porter, M. F. Wojciechowski, C. S. Campbell, and M. J. Donoghue. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Mo. Bot. Gard. 82: 247–277.Google Scholar
  3. Hershkovitz, M. A. and L. A. Lewis. 1996. Deeplevel diagnostic value of the rDNA-ITS region. Mol. Biol. Evol. 13(9): 1276–1295.Google Scholar
  4. Hershkovitz, M. A. and E. A. Zimmer. 1996. Conservation patterns in angiosperm rDNA ITS2 sequences. Nucleic Acids Res. 24 (15): 2857–2867.Google Scholar
  5. Larsen, N., G. J. Olsen, B. L. Maidak, M. J. McCaughey, R. Overbeek, T. J. Macke, T. L. Marsh, and C. R. Woese. 1993. The ribosomal database project. Nucleic Acids Res. 21(13): 3021–3023.Google Scholar
  6. Liston, A. and E. AlvarezBuylla. 1995. Internal transcribed spacer sequences of conifers: ‘there is a fungus among us’. Inoculum 46(3): 26.Google Scholar
  7. Liston, A., W. A. Robinson, J. M. Oliphant, and E. R. Alvarez-Buylla. 1996. Length variation in the nuclear ribosomal DNA internal transcribed spacer region of nonflowering plants. Sys. Bot. 21(2): 109–120.Google Scholar
  8. Liu, J.-S. and C. L. Schardl. 1994. A conserved sequence in internal transcribed spacer 1 of plant nuclear rRNA genes. Plant Mol. Biol. 26: 775–778.Google Scholar
  9. Ritland, C., K. Ritland, and N.A. Strauss. 1993. Variation in the internal transcribed spacers (ITS1 and ITS2) among eight taxa of the Mimulus guttatus species complex. Mol. Biol. Evol. 10: 1273–1278.Google Scholar
  10. Schuster, W., R. Ternes, V. Knoop, R. Hiesel, B. Wissinger, and A. Brennicke. 1991. Distribution of RNA editing sites in Oenothera mitochondrial mRNAs and rRNAs. Curr. Genet. 20: 397–404.Google Scholar
  11. Suh, Y., L. B. Thien, and E. A. Zimmer. 1992. Nucleotide sequences of the internal transcribed spacers and 5.8S rRNA gene in Canella winterana (Magnoliales; Canellaceae). Nucleic Acids Res. 20: 6101–6102.Google Scholar
  12. White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315–322, in PCR protocols: a guide to methods and application. (eds.) M. Innis, D. Gelfand, J., and T. White Academic Press, San Diego.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • David V. Jobes
    • 1
  • Leonard B. Thien
    • 1
  1. 1.Department of Cell and Molecular BiologyTulane UniversityNew OrleansUSA

Personalised recommendations