Letters in Mathematical Physics

, Volume 46, Issue 1, pp 81–93 | Cite as

Courant Algebroids and Strongly and Strongly Homotopy Lie Algebras

Article

Abstract

Courant algebroids are structures which include as examples the doubles of Lie bialgebras and the bundle TM⊕ T*M with the bracket introduced by T. Courant for the study of Dirac structures. Within the category of Courant algebroids one can construct the doubles of Lie bialgebroids, the infinitesimal objects for Poisson groupoids. We show that Courant algebroids can be considered as strongly homotopy Lie algebras.

strongly homotopy Lie algebras Lie algebroids Dirac structures Poisson geometry. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnich, G., Fulp, R., Lada, T. and Stasheff, J.: The sh Lie structure of Poisson brackets in field theory, Comm. Math. Phys. 191(1998), 279-298.Google Scholar
  2. 2.
    Beilinson, A. and Bernstein, J.: A proof of Jantzen conjectures, Adv. Soviet Math. 16(1993), No. 1.Google Scholar
  3. 3.
    Chari, V. and Pressley, A.: A Guide to Quantum Groups, Cambridge Univ. Press, 1994.Google Scholar
  4. 4.
    Courant, T.: Dirac manifolds, Trans. Amer. Math. Soc. 319(1990), 631-661.Google Scholar
  5. 5.
    Dirac, P.: Lectures in quantum mechanics, Yeshiva University, 1964.Google Scholar
  6. 6.
    Drinfeld, V.: Quantum Groups, Proc. Internat. Congress of Mathematicians (Berkeley), Amer. Math. Soc., Providence, 1986.Google Scholar
  7. 7.
    Etingof, P. and Varchenko, A.: Geometry and classification of solutions of the classical dynamical Yang-Baxter equation, q-alg/9703040.Google Scholar
  8. 8.
    Henneaux, M. and Teitelboim, C.: Quantization of Gauge Systems, Princeton Univ. Press, 1993.Google Scholar
  9. 9.
    Hinich, V. and Schechtman, V.: Homotopy Lie algebras, Adv. Soviet Math. 16(1993), No. 2.Google Scholar
  10. 10.
    Kjeseth, L. J.: BRST cohomology and homotopy Lie-Rinehart pairs, PhD thesis, Univ. North Carolina, 1996.Google Scholar
  11. 11.
    Kontsevich, M.: Deformation quantization of Poisson manifolds, q-alg/9709040.Google Scholar
  12. 12.
    Kosmann-Schwarzbach, Y.: Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math. 41(1995), 153-165.Google Scholar
  13. 13.
    Kosmann-Schwarzbach, Y.: Graded Poisson brackets and field theory, in: J. Bertrand et al., (eds), Modern Group Theoretical Methods in Physics, Kluwer Acad. Publ., Dordrecht, 1995, pp. 189-196.Google Scholar
  14. 14.
    Kosmann-Schwarzbach, Y.: The Lie bialgebroid of a Poisson-Nijenhuis manifold, Lett. Math. Phys. 38(1996), 421-428.Google Scholar
  15. 15.
    Lada, T. and Markl, M. Strongly homotopy Lie algebras, Comm. Algebra 23(6) (1995), 2147-2161.Google Scholar
  16. 16.
    Zhang-Ju Liu, Weinstein, A. and Ping Xu: Manin triples for Lie bialgebroids, J. Differential Geom. 45(1997), 547-574.Google Scholar
  17. 17.
    Mackenzie, K.: Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc. Lecture Note Ser. 124, Cambridge Univ. Press, 1987.Google Scholar
  18. 18.
    Mackenzie, K. C. H. and Xu, P.: Lie bialgebroids and Poisson groupoids, Duke Math. J. 73(1994), 415-452.Google Scholar
  19. 19.
    Schlessinger, M. and Stasheff, J.: The Lie algebra structure on tangent cohomology and deformation theory, J. Pure Appl. Algebra 38(1985), 313-322.Google Scholar
  20. 20.
    Stasheff, J.: Deformation theory and the Batalin-Vilkovisky master equation, q-alg/9702012, 1997.Google Scholar
  21. 21.
    Weinstein, A.: Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40(1988), No. 2.Google Scholar
  22. 22.
    Weinstein, A.: Lagrangian Mechanics and Groupoids, Fields Inst. Comm. 7 (1996).Google Scholar
  23. 23.
    Weinstein, A. and Xu, P.: Extensions of symplectic groupoids and quantization, J. reine angew. Math. 417(1991), 159-189.Google Scholar
  24. 24.
    Zwiebach, B.: Closed string field theory: quantum action and the Batalin-Vilkovisky master equation, Nuclear Phys. B 390(1993), 33-152.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyU.S.A

Personalised recommendations