Advertisement

Letters in Mathematical Physics

, Volume 45, Issue 1, pp 1–9 | Cite as

Quantum Double for Quasi-Hopf Algebras

  • S. Majid
Article

Abstract

We introduce a quantum double quasi-triangular quasi-Hopf algebra D(H) associated to any quasi-Hopf algebra H. The algebra structure is a cocycle double cross-product. We use categorical reconstruction methods. As an example, we recover the quasi-Hopf algebra of Dijkgraaf, Pasquier and Roche as the quantum double Dφ(G) associated to a finite group G and group 3-cocycle φ.

quantum double quasi-Hopf algebra finite group cocycle category reconstruction. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Drinfeld, V. G.: Quantum groups, in: A. Gleason, (ed.), Proc. ICM, Amer. Math. Soc. Providence, RI, 1987, 798–820.Google Scholar
  2. 2.
    Drinfeld, V. G.: Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), 1419–1457.Google Scholar
  3. 3.
    Majid, S.: Representations, duals and quantum doubles of monoidal categories, Rend. Circ. Mat. Palermo Suppl. (2) 26 (1991), 197–206.Google Scholar
  4. 4.
    Drinfeld, V. G.: Private communication, February 1990.Google Scholar
  5. 5.
    Majid, S.: Tannaka–Krein theorem for quasi-Hopf algebras and other results, Contemp. Math. 134 (1992), 219–232.Google Scholar
  6. 6.
    Pasquier, V., Dijkgraaf, R. and Roche, P.: Quasi-quantum groups related to orbifold models, in: Proc. Modern Quantum Field Theory, Tata Institute, Bombay, 1990, pp. 375–383.Google Scholar
  7. 7.
    Dijkgraaf, R. and Witten, E.: Topological gauge theories and group cohomology, Comm. Math. Phys. 129 (1990), 393–429.Google Scholar
  8. 8.
    MacLane, S.: Categories for the Working Mathematician, Springer, New York, 1974.Google Scholar
  9. 9.
    Joyal, A. and Street, R.: Braided monoidal categories, Mathematics Reports 86008, Macquarie University, 1986.Google Scholar
  10. 10.
    Majid, S.: Braided groups and duals of monoidal categories, Canad. Math. Soc. Conf. Proc. 13 (1992), 329–343.Google Scholar
  11. 11.
    Majid, S.: Foundations of Quantum Group Theory, Cambridge University Press, 1995.Google Scholar
  12. 12.
    Whitehead, J. H. C.: Combinatorial homotopy, II, Bull. Amer. Math. Soc. 55 (1949), 453–496.Google Scholar
  13. 13.
    Sweedler, M. E.: Cohomology of algebras over Hopf algebras, Ann. of Math. 205–239.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • S. Majid
    • 1
    • 2
  1. 1.Department of MathematicsHarvard University, Science CenterCambridgeU.S.A.
  2. 2.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeU.K.

Personalised recommendations