Advertisement

Machine Learning

, Volume 30, Issue 2–3, pp 127–132 | Cite as

Guest Editors' Introduction: On Applied Research in Machine Learning

  • Foster Provost
  • Ron Kohavi
Article

References

  1. Aronis, J. M., Provost, F. J. & Buchanan, B. G. (1996). Exploiting background knowledge in automated discovery. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (pp. 355-358), AAAI Press.Google Scholar
  2. Berry, M. J. A. & Linoff, G. (1997). Data Mining Techniques: For Marketing, Sales, and Customer Support, John Wiley & Sons.Google Scholar
  3. Brodley, C. & Smyth, P. (1997). Applying classification algorithms in practice. Statistics and Computing 7.Google Scholar
  4. Burl, M., Asker, L., Smyth, P., Fayyad, U., Perona, P., Crumpler, L. & Aubele, J. (1998). Learning to recognize volcanoes on venus, Machine Learning, 30, 165-194.Google Scholar
  5. Danyluk, A. P. & Provost, F. J. (1993). Small disjuncts in action: learning to diagnose errors in the telephone network local loop. Proceedings of the Tenth International Conference on Machine Learning (pp. 81-88), Morgan Kaufmann.Google Scholar
  6. Fawcett, T. & Provost, F. J. (1997). Adaptive fraud detection. Data Mining and Knowledge Discovery, 1.Google Scholar
  7. Fayyad, U. M., Piatetsky-Shapiro, G. & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39.Google Scholar
  8. Finn, P., Muggleton, S., Page, D. & Srinivasan, A. (1998). Pharmacophore discovery using the inductive logic programming system PROGOL. Machine Learning, 30, 241-270.Google Scholar
  9. Kubat, M., Holte, R. C. & Matwin, S. (1998). Machine learning for the detection of oil spills in satellite radar images. Machine Learning, 30, 195-215.Google Scholar
  10. Kuhn, T. (1970). The Structure of Scientific Revolutions, second edition, Chicago, IL: University of Chicago Press.Google Scholar
  11. Langley, P. & Simon, H. A. (1995). Applications of machine learning and rule induction. Communications of the ACM, 38.Google Scholar
  12. Lee, Y., Buchanan, B. G. & Aronis, J. M. (1998). Knowledge-based learning in exploratory science: Learning rules to predict rodent carcinogenicity. Machine Learning, 30, 217-240.Google Scholar
  13. Merz, C. J. & Murphy, P. M. (1997). UCI repository of machine learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.html.Google Scholar
  14. Provost, F. J. & Aronis, J. M. (1996). Scaling up inductive learning with massive parallelism. Machine Learning, 23.Google Scholar
  15. Saitta, L. & Neri, F. (1998). Learning the the “real world.” Machine Learning, 30, 133-163.Google Scholar
  16. Schorr, H. & Rappaport, A. (1990). Preface, Innovative Applications of Artificial Intelligence, AAAI Press.Google Scholar
  17. Shrobe, H. (1996). The innovative applications of artificial intelligence conference: Past and future. AI Magazine, 17.Google Scholar
  18. Smith, R. & Scott, C. (1992). Preface. Innovative Applications of Artificial Intelligence 3 (pp. ix–xi), AAAI Press.Google Scholar
  19. Stein, L. A. (1996). Science and engineering in knowledge representation and reasoning. AI Magazine, 17.Google Scholar
  20. Turney, P. (1997). Cost-sensitive learning. http://ai.iit.nrc.ca/bibliographies/cost-sensitive.html.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Foster Provost
    • 1
  • Ron Kohavi
    • 2
  1. 1.Bell Atlantic Science and TechnologyWhite Plains
  2. 2.Data Mining and Visualization, Silicon Graphics Inc.Mountain View

Personalised recommendations