Gaudin Model, KZ Equation and an Isomonodromic Problem on the Tours
- 126 Downloads
- 24 Citations
Abstract
This Letter presents a construction of isospectral problems on the torus. The construction starts from an SU(n) version of the XYZ Gaudin model recently studied by Kuroki and Takebe within the context of a twisted WZW model. In the classical limit, the quantum Hamiltonians of the generalized Gaudin model turn into classical Hamiltonians with a natural r-matrix structure. These Hamiltonians are used to build a nonautonomous multi-time Hamiltonian system, which is eventually shown to be an isomonodromic problem on the torus. This isomonodromic problem can also be reproduced from an elliptic analogue of the KZ equation for the twisted WZW model. Finally, a geometric interpretation of this isomonodromic problem is discussed in the language of a moduli space of meromorphic connections.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Knizhnik, V. G. and Zamolodchikov, A. B.: Current algebra and Wess–Zumino model in two dimensions, Nuclear Phys. B 247 (1984), 83–103.Google Scholar
- 2.Reshetikhin, N.: The Knizhnik–Zamolodchikov system as a deformation of the isomonodromy problem, Lett. Math. Phys. 26 (1992), 167–172.Google Scholar
- 3.Harnad, J.: Quantum isomonodromic deformations and the Knizhnik–Zamolodchikov equations, hep-th/9406078.Google Scholar
- 4.Bernard, D.: On the Wess–Zumino–Witten models on the torus, Nuclear Phys. B 303 (1988), 77–93; On the Wess–Zumino–Witten models on Riemann surfaces, Nuclear Phys. B 309 (1988), 145–174.Google Scholar
- 5.Korotkin, D. and Samtleben, J.: On the quantization of isomonodromic deformations on the torus, Internat. J. Modern Phys. A 12 (1997), 2013–2033.Google Scholar
- 6.Levin, A. M. and Olshanetsky, M. A.: Classical limit of the Knizhnik–Zamolodchikov–Bernard equations as hierarchy of isomonodromic deformations – Free field approach, hep-th/9709207.Google Scholar
- 7.Kuroki, G. and Takebe, T.: Twisted Wess–Zumino–Witten models on elliptic curves, q-alg/9612033.Google Scholar
- 8.Jimbo, M. and Miwa, T.: Monodromy-preserving deformations of linear ordinary differential equations with rational coefficients, II, Physica 2D (1981), 407–448; ditto, III, Physica 4D (1981), 26–46.Google Scholar
- 9.Harnad, J.: Dual isomonodromic deformations and moment maps to loop algebras, Comm. Math. Phys. 166 (1994), 337–365.Google Scholar
- 10.Hitchin, N. J.: Stable bundles and integrable systems, Duke Math. J. 54 (1987), 91–114; Flat connections and geometric quantization, Comm. Math. Phys. 131 (1990), 347–380.Google Scholar
- 11.Markman, E.: Spectral curves and integrable systems, Compositio Math. 93 (1994), 255–290.Google Scholar
- 12.Feigin, B., Frenkel, E. and Reshetikhin, N.: Gaudin model, Bethe Ansatz and critical level, Comm. Math. Phys. 166 (1994), 27–62.Google Scholar
- 13.Enriquez, B. and Rubtsov, V. Hitchin systems, higher Gaudin operators, and r-matrices, Math. Res. Lett. 3 (1996), 343–357.Google Scholar
- 14.Nekrasov, N.: Holomorphic bundles and many-body systems, Comm. Math. Phys. 180 (1996), 587–603.Google Scholar
- 15.Beilinson, A. A. and Drinfeld, V. G.: Quantization of Hitchin' fibration and Langlands program, Preprint, 1994.Google Scholar
- 16.Etingof, P. I.: Representations of affine Lie algebras, elliptic r-matrix system, and special functions, Comm. Math. Phys. 159 (1994), 471–502.Google Scholar
- 17.Okamoto, K.: On Fuchs' problem on a torus, I, Funkcial. Ekvac. 14 (1971), 137–152; ditto, II, J. Fac. Sci. Univ. Tokyo, Sect. IA 24 (1977), 357–371; Déformation d'une équation differéntielle linéaire avec une singularité irrégulière sur un tore, ibid 26 (1979), 501–518.Google Scholar
- 18.Iwasaki, K.: Moduli and deformation for Fuchsian projective connections on a Riemann surface, J. Fac. Sci. Univ. Tokyo, Sect. IA 38 (1991), 431–531; Fuchsian moduli on a Riemann surface – its Poisson structure and Poincaré–Lefschetz duality, Pacific J. Math. 155 (1992), 319–340.Google Scholar
- 19.Kawai, S.: Deformations of complex structures on a torus and monodromy preserving deformations, Preprint, 1996.Google Scholar
- 20.Belavin, A. A.: Dynamical symmetry of integrable quantum systems, Nuclear Phys. B 180[FS2] (1981), 189–200.Google Scholar
- 21.Takasaki, K.: Spectral curves and equations in isomonodromic problems of Schlesinger type, solv-int/9704004; Dual isomonodromic problems and Whitham equations, solv-int/9705016.Google Scholar
- 22.Smirnov, F. A.: Dynamical symmetries of massive integrable systems, 1 and 2, Internat. J. Modern Phys. A 7, Suppl. 1B (1992), 813–837, 839–858.Google Scholar
- 23.Frenkel, I. B. and Reshetikhin, N. Yu.: Quantum affine algebras and holonomic difference equations, Comm. Math. Phys. 146 (1992), 1–60.Google Scholar
- 24.Cherednik, I.: Quantum Knizhnik–Zamolodchikov equations and affine root systems, Comm. Math. Phys. 150 (1992), 109–136.Google Scholar
- 25.Jimbo, M. and Sakai, H.: A q-analogue of the sixth Painlevé equation, Lett. Math. Phys. 38 (1996), 145–154.Google Scholar