Advertisement

Letters in Mathematical Physics

, Volume 44, Issue 2, pp 143–156 | Cite as

Gaudin Model, KZ Equation and an Isomonodromic Problem on the Tours

  • Kanehisa Takasaki
Article

Abstract

This Letter presents a construction of isospectral problems on the torus. The construction starts from an SU(n) version of the XYZ Gaudin model recently studied by Kuroki and Takebe within the context of a twisted WZW model. In the classical limit, the quantum Hamiltonians of the generalized Gaudin model turn into classical Hamiltonians with a natural r-matrix structure. These Hamiltonians are used to build a nonautonomous multi-time Hamiltonian system, which is eventually shown to be an isomonodromic problem on the torus. This isomonodromic problem can also be reproduced from an elliptic analogue of the KZ equation for the twisted WZW model. Finally, a geometric interpretation of this isomonodromic problem is discussed in the language of a moduli space of meromorphic connections.

Gaudin model knizhnik–Zamolodchikov (KZ) equation. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knizhnik, V. G. and Zamolodchikov, A. B.: Current algebra and Wess–Zumino model in two dimensions, Nuclear Phys. B 247 (1984), 83–103.Google Scholar
  2. 2.
    Reshetikhin, N.: The Knizhnik–Zamolodchikov system as a deformation of the isomonodromy problem, Lett. Math. Phys. 26 (1992), 167–172.Google Scholar
  3. 3.
    Harnad, J.: Quantum isomonodromic deformations and the Knizhnik–Zamolodchikov equations, hep-th/9406078.Google Scholar
  4. 4.
    Bernard, D.: On the Wess–Zumino–Witten models on the torus, Nuclear Phys. B 303 (1988), 77–93; On the Wess–Zumino–Witten models on Riemann surfaces, Nuclear Phys. B 309 (1988), 145–174.Google Scholar
  5. 5.
    Korotkin, D. and Samtleben, J.: On the quantization of isomonodromic deformations on the torus, Internat. J. Modern Phys. A 12 (1997), 2013–2033.Google Scholar
  6. 6.
    Levin, A. M. and Olshanetsky, M. A.: Classical limit of the Knizhnik–Zamolodchikov–Bernard equations as hierarchy of isomonodromic deformations – Free field approach, hep-th/9709207.Google Scholar
  7. 7.
    Kuroki, G. and Takebe, T.: Twisted Wess–Zumino–Witten models on elliptic curves, q-alg/9612033.Google Scholar
  8. 8.
    Jimbo, M. and Miwa, T.: Monodromy-preserving deformations of linear ordinary differential equations with rational coefficients, II, Physica 2D (1981), 407–448; ditto, III, Physica 4D (1981), 26–46.Google Scholar
  9. 9.
    Harnad, J.: Dual isomonodromic deformations and moment maps to loop algebras, Comm. Math. Phys. 166 (1994), 337–365.Google Scholar
  10. 10.
    Hitchin, N. J.: Stable bundles and integrable systems, Duke Math. J. 54 (1987), 91–114; Flat connections and geometric quantization, Comm. Math. Phys. 131 (1990), 347–380.Google Scholar
  11. 11.
    Markman, E.: Spectral curves and integrable systems, Compositio Math. 93 (1994), 255–290.Google Scholar
  12. 12.
    Feigin, B., Frenkel, E. and Reshetikhin, N.: Gaudin model, Bethe Ansatz and critical level, Comm. Math. Phys. 166 (1994), 27–62.Google Scholar
  13. 13.
    Enriquez, B. and Rubtsov, V. Hitchin systems, higher Gaudin operators, and r-matrices, Math. Res. Lett. 3 (1996), 343–357.Google Scholar
  14. 14.
    Nekrasov, N.: Holomorphic bundles and many-body systems, Comm. Math. Phys. 180 (1996), 587–603.Google Scholar
  15. 15.
    Beilinson, A. A. and Drinfeld, V. G.: Quantization of Hitchin' fibration and Langlands program, Preprint, 1994.Google Scholar
  16. 16.
    Etingof, P. I.: Representations of affine Lie algebras, elliptic r-matrix system, and special functions, Comm. Math. Phys. 159 (1994), 471–502.Google Scholar
  17. 17.
    Okamoto, K.: On Fuchs' problem on a torus, I, Funkcial. Ekvac. 14 (1971), 137–152; ditto, II, J. Fac. Sci. Univ. Tokyo, Sect. IA 24 (1977), 357–371; Déformation d'une équation differéntielle linéaire avec une singularité irrégulière sur un tore, ibid 26 (1979), 501–518.Google Scholar
  18. 18.
    Iwasaki, K.: Moduli and deformation for Fuchsian projective connections on a Riemann surface, J. Fac. Sci. Univ. Tokyo, Sect. IA 38 (1991), 431–531; Fuchsian moduli on a Riemann surface – its Poisson structure and Poincaré–Lefschetz duality, Pacific J. Math. 155 (1992), 319–340.Google Scholar
  19. 19.
    Kawai, S.: Deformations of complex structures on a torus and monodromy preserving deformations, Preprint, 1996.Google Scholar
  20. 20.
    Belavin, A. A.: Dynamical symmetry of integrable quantum systems, Nuclear Phys. B 180[FS2] (1981), 189–200.Google Scholar
  21. 21.
    Takasaki, K.: Spectral curves and equations in isomonodromic problems of Schlesinger type, solv-int/9704004; Dual isomonodromic problems and Whitham equations, solv-int/9705016.Google Scholar
  22. 22.
    Smirnov, F. A.: Dynamical symmetries of massive integrable systems, 1 and 2, Internat. J. Modern Phys. A 7, Suppl. 1B (1992), 813–837, 839–858.Google Scholar
  23. 23.
    Frenkel, I. B. and Reshetikhin, N. Yu.: Quantum affine algebras and holonomic difference equations, Comm. Math. Phys. 146 (1992), 1–60.Google Scholar
  24. 24.
    Cherednik, I.: Quantum Knizhnik–Zamolodchikov equations and affine root systems, Comm. Math. Phys. 150 (1992), 109–136.Google Scholar
  25. 25.
    Jimbo, M. and Sakai, H.: A q-analogue of the sixth Painlevé equation, Lett. Math. Phys. 38 (1996), 145–154.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Kanehisa Takasaki
    • 1
  1. 1.Department of Fundamental SciencesKyoto University, YoshidaSakyo-ku, KyotoJapan

Personalised recommendations