Journal of Elasticity

, Volume 51, Issue 2, pp 105–126

Quasistatic Viscoelastic Contact with Normal Compliance and Friction

  • M. Rochdi
  • M. Shillor
  • M. Sofonea


We prove the existence of a unique weak solution to the quasistatic problem of frictional contact between a deformable body and a rigid foundation. The material is assumed to have nonlinear viscoelastic behavior. The contact is modeled with normal compliance and the associated version of Coulomb's law of dry friction. We establish the continuous dependence of the solution on the normal compliance function. Moreover, we prove the existence of a unique solution to the problem of sliding contact with wear.

viscoelastic material nonlinear constitutive law frictional contact normal compliance sliding friction wear. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.S. Adams, Sobolev Spaces, Academic Press, New York, 1975.MATHGoogle Scholar
  2. 2.
    A. Ait Moussa, Modelisation et Etudes des Singularities de Contraintes d'un Joint Colle Tres Mince. Thesis, University of Montpelier-2, (1989).Google Scholar
  3. 3.
    A. Amassad and M. Sofonea, Analysis of a quasistatic viscoplastic problem involving Tresca friction law, to appear in Discrete and Continuous Dynamical Systems.Google Scholar
  4. 4.
    L.-E. Andersson, A quasistatic frictional problem with normal compliance, Nonlin. Anal. 16(4) (1991) 347-370.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    K.T. Andrews, A. Klarbring, M. Shillor and S. Wright, A dynamical thermoviscoelastic contact problem with friction and wear. Int. J. Engng. Sci. 35(14) (1997) 1291-1309.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    K.T. Andrews, K.L. Kuttler and M. Shillor, On the dynamic behavior of a thermoviscoelastic body in frictional contact with a rigid obstacle. Euro. J. Appl. Math. 8(1997) 417-436.MATHMathSciNetGoogle Scholar
  7. 7.
    M. Cocu, E. Pratt and M. Raous, Formulation and approximation of quasistatic frictional contact. Int. J. Engng. Sci. 34(7) (1996) 783-798.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Duvaut and J.L. Lions, Les Inéquations en Mécanique et en Physique. Dunod, Paris, 1972.MATHGoogle Scholar
  9. 9.
    I. Hlaváček and J. Nečas, Mathematical Theory of Elastic and Elastoplastic Bodies: an Introduction, Elsevier, Amsterdam, 1981.Google Scholar
  10. 10.
    I.R. Ionescu and M. Sofonea, Functional and Numerical Methods in Viscoelasticity. Oxford University Press, Oxford, 1993.Google Scholar
  11. 11.
    J. Jarusek, Contact problems with bounded friction, coercive case, Czech. Math. J. 33(108) (1983) 237-261.MATHMathSciNetGoogle Scholar
  12. 12.
    L. Johansson and A. Klarbring, Thermoelastic frictional contact problems: Modelling, finite element approximation and numerical realization. Comp. Meth. Appl. Mech. Eng. 105(1993) 181-210.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    N. Kikuchi and T.J. Oden, Contact Problems in Elasticity. SIAM, Philadelphia, 1988.MATHGoogle Scholar
  14. 14.
    A. Klarbring, A. Mikelic and M. Shillor, Frictional contact problems with normal compliance. Int. J. Engng. Sci. 26(8) (1988) 811-832.MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Klarbring, A. Mikelic and M. Shillor, A global existence result for the quasistatic frictional contact problem with normal compliance. Unilateral Problems in Structural Analysis, Vol. 4, Eds. G. DelPiero and F. Maceri, Birkhauser, Boston (1991) 85-111.Google Scholar
  16. 16.
    A. Klarbring, A. Mikelic and M. Shillor, The rigid punch problem with friction. Int. J. Engng. Sci. 29(6) (1991) 751-768.MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    C. Licht, Un problème d'élasticité avec frottement visqueux non linéaire. J. Méc. Th. Appl. 4(1) (1985) 15-26.MATHMathSciNetGoogle Scholar
  18. 18.
    C. Licht, private communication.Google Scholar
  19. 19.
    J.A.C. Martins and T.J. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlin. Anal. 11(3) (1987) 407-428.MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Necas, J. Jarusek and J. Haslinger, On the solution of the variational inequality to the Signorini problem with small friction. Boll. U.M.I. 17(5) (1980) 796-811.MATHMathSciNetGoogle Scholar
  21. 21.
    P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Birkhauser, Basel, 1985.MATHGoogle Scholar
  22. 22.
    M. Raous, M. Jean and J.J. Moreau, Contact Mechanics. Plenum Press, New York (1995).Google Scholar
  23. 23.
    M. Rochdi, Analyse Variationnelle de Quelques Problèmes aux Limites en Viscoplasticité, Ph.D. Thesis, University of Perpignan, France (1997).Google Scholar
  24. 24.
    M. Rochdi and M. Sofonea, On frictionless contact between two elastic-viscoplastic bodies. QJMAM 11(3) (1997), 481-496.MathSciNetGoogle Scholar
  25. 25.
    M. Shillor and M. Sofonea, A quasistatic viscoelastic contact problem with friction, to appear in JMAA.Google Scholar
  26. 26.
    M. Sofonea, On a contact problem for elastic-viscoplastic bodies. Nonlin. Anal. 29(9) (1997) 1037-1050.MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    N. Strömberg, Continuum Thermodynamics of Contact, Friction and Wear. Ph.D. Thesis, Linköping University, Sweden (1995).Google Scholar
  28. 28.
    N. Strömberg, L. Johansson and A. Klarbring, Derivation and analysis of a generalized standard model for contact friction and wear. Int. J. Solids Structures 33(13) (1996) 1817-1836.MATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • M. Rochdi
    • 1
  • M. Shillor
    • 2
  • M. Sofonea
    • 1
  1. 1.Laboratoire de Théorie des SystèmesUniversity of PerpignanPerpignanFrance
  2. 2.Department of Mathematical Sciences–OaklandUniversity RochesterUSA

Personalised recommendations