Advertisement

Environmental Biology of Fishes

, Volume 51, Issue 4, pp 399–410 | Cite as

Fish community structure in relation to environmental variation in floodplain lakes of the Araguaia River, Amazon Basin

  • Francisco L. Tejerina-Garro
  • Réjean Fortin
  • Marco A. Rodríguez
Article

Abstract

We examined the relationship between structure of fish communities and 11 environmental variables in floodplain lakes from the Middle Araguaia River, Brazil. Samples were collected at the beginning and at the end of the dry season in standardized surveys of six seasonally isolated lakes and six lakes permanently connected to the river mainstem. Canonical correspondence analysis revealed that among the environmental descriptors of lakes, only Secchi transparency and maximum depth were significantly related to fish community structure. Most of the patterned variation in community structure was associated with marked seasonal changes in lake transparency (means: early dry season=90.8 cm; late dry season = 33.2 cm) and depth (means: early dry season = 4.6 m; late dry season = 2.0 m). Visually oriented fishes had highest abundance in clear lakes, whereas fishes with adaptations to low visibility were most abundant in turbid lakes. The type of isolation of lakes from the river channel had no apparent effect on community structure. The results suggest that sensory adaptations for detection of prey under prevailing optical conditions play a major role in the organization of these communities, as predicted by a model of fish community organization originally developed for floodplain lakes of the Orinoco River, Venezuela.

tropical freshwaters assemblage organization seasonality water transparency vision Brazil canonical correspondence analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Bennett, M.V.L. 1971. Electric organs. pp. 347–491. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Volume 5, Academic Press, New York.Google Scholar
  2. Chapman, L.J. & C.A. Chapman. 1993. Fish populations in tropical floodplain pools: a re-evaluation of Holden's data on the River Sokoto. Ecol. Freshw. Fish 2: 23–30.Google Scholar
  3. Cleveland, W.S. 1985. The elements of graphing data. Wadsworth, Pacific Grove. 323 pp.Google Scholar
  4. Goulding, M. 1980. The fishes and the forest, explorations in Amazonian natural history. University of Califonia Press, Berkeley. 280 pp.Google Scholar
  5. Goulding, M., M. Leal Carvalho & E.G. Ferreira. 1988. Rio Negro: rich life in poor water. SPB Academic Publishing, The Hague. 200 pp.Google Scholar
  6. Fink, W.L. & S.V. Fink. 1979. Central Amazonia and its fishes. Comp. Biochem. Phys. A 62: 13–29.Google Scholar
  7. Hamilton, S.K. & W.M. Lewis, Jr. 1990. Basin morphology in relation to chemical and ecological characteristics of lakes on the Orinoco River floodplain, Venezuela. Arch. Hydrobiol. 119: 393–425.Google Scholar
  8. Hara, T.J. 1971. Chemoreception. pp. 79–120. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Volume 5, Academic Press, New York.Google Scholar
  9. Hinch, S.C., N.C. Collins & H.H. Harvey. 1991. Relative abundance of littoral zone fishes: biotic interactions, abiotic factors, and postglacial colonization. Ecology 72: 1314–1324.Google Scholar
  10. Hinch, S.G. & N.C. Collins. 1993. Relationships of littoral fish abundance to water chemistry and macrophyte variables in central Ontario lakes. Can. J. Fish. Aquat. Sci. 50: 1870–1878.Google Scholar
  11. Ibarra, M. & D.J. Stewart. 1989. Longitudinal zonation of sandy beach fishes in the Napo River Basin, Eastern Ecuador. Copeia dy1989: 364–381.Google Scholar
  12. Jackson, D.A. & H.H. Harvey. 1989. Biogeographic associations in fish assemblages: local vs. regional processes. Ecology 70: 1472–1484.Google Scholar
  13. Junk, W.J. 1984. Ecology of the várzea floodplain of Amazonian white-water rivers. pp. 215–244. In: H. Sioli (ed.) The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and Its Basin, Dr W. Junk Publishers, The Hague.Google Scholar
  14. Junk, W.J., G.M. Soares & F.M. Carvalho. 1983. Distribution of fish species in a lake of the Amazon River floodplain near Manaus (Lago Camaleao), with special reference to extreme oxygen conditions. Amazoniana 7: 397–421.Google Scholar
  15. Kramer, D.L., C.C. Lindsey, G.E.E. Moodie & E.D. Stevens. 1978. The fishes and the aquatic environment of the central Amazon Basin, with particular reference to respiratory patterns. Can. J. Zool. 56: 717–725.Google Scholar
  16. Landívar, J. 1996. Écologie de la communauté de poissons et du chame (Dormitator latifrons) dans les rivières Vinces et Babahoyo (Équateur) et leur plaine d'inondation. M.Sc. Thesis, Université du Québec à Montréal, Montréal. 69 pp.Google Scholar
  17. Lowe-McConnell, R.H. 1975. Fish communities in tropical freshwaters. Longman, New York. 337 pp.Google Scholar
  18. Lundberg, J.G & J.C. Strager. 1985. Microgeographic diversity in the neotropical knife-fish Eigenmannia macrops (Gymnotiformes, Sternopygidae). Env. Biol. Fish. 13: 173–181.Google Scholar
  19. Marshall, N.B. 1971. Explorations in the life of fishes. Harvard University Press, Cambridge. 204 pp.Google Scholar
  20. Merona, B. 1987. Ecological aspects of the ichthyofauna of Rio Tocantins. Acta Amazônica 16/17: 109–124.Google Scholar
  21. Montgomery, D.C. & E.A. Peck. 1982. Introduction to linear regression analysis. Wiley, New York. 504 pp.Google Scholar
  22. Moyle, P.B. & J.J. Cech, Jr. 1996. Fishes: an introduction to ichthyology, 3rd ed. Prentice-Hall, Englewood Cliffs. 590 pp.Google Scholar
  23. Palmer, M.W. 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74: 2215–2230.Google Scholar
  24. Robinson, C.L.K. & W.M. Tonn. 1989. Influence of environmental factors and piscivory in structuring fish assemblages of small Alberta lakes. Can. J. Fish. Aquat. Sci. 46: 81–89.Google Scholar
  25. Rodríguez, M.A. & W.M. Lewis, Jr. 1990. Diversity and species composition of fish communities of Orinoco floodplain lakes. Nat. Geogr. Res. 6: 319–328.Google Scholar
  26. Rodríguez, M.A. & W.M. Lewis, Jr. 1994. Regulation and stability in fish assemblages of neotropical floodplain lakes. Oecologia 99: 166–180.Google Scholar
  27. Rodríguez, M.A. & W.M. Lewis, Jr. 1997. Structure of fish assemblages along environmental gradients in floodplain lakes of the Orinoco River. Ecol. Monogr. 67: 109–128.Google Scholar
  28. ter Braak, C.J.F. 1990. Interpreting canonical correlation analysis through biplots of structure correlations and weights. Psychometrika 55: 519–531.Google Scholar
  29. Tonn, W.M., J.J. Magnuson, M. Rask & J. Toivonen. 1990. Intercontinental comparison of small-lake fish assemblages: the balance between local and regional processes. Amer. Nat. 136: 345–375.Google Scholar
  30. Welcomme, R.L. 1985. River fisheries. FAO Fisheries Technical Paper 262, Rome. 330 pp.Google Scholar

References cited

  1. Bain, M.B. 1985. Quantifying stream substrate for habitat analysis studies. N. Amer. J. Fish. Manag. 5: 499–506.Google Scholar
  2. Chipps, S.R., W.B. Perry & S.A. Perry. 1994. Patterns of microhabitat use among four species of darters in three Appalachian streams. Amer. Midl. Nat. 131: 175–180.Google Scholar
  3. Fisher, W.L. & W.D. Pearson. 1987. Patterns of resource utilization among four species of darters in three central Kentucky streams. pp 69–76. In: W.J. Matthews & D.C. Heins (ed.) Community and Evolutionary Ecology of North American Stream Fishes, University of Oklahoma Press, Norman.Google Scholar
  4. Greenberg, L.A. 1991. Habitat use and feeding behavior of thirteen species of benthic stream fishes. Env. Biol. Fish. 31: 389–401.Google Scholar
  5. Hlohowskyj, I. & A.M. White. 1983. Food resource partitioning and selectivity by the greenside, rainbow, and fantail darters (Pisces: Percidae). Ohio J. Sci. 83: 201–208.Google Scholar
  6. Hlohowskyj, I. & T.E. Wissing. 1986. Substrate selection by fantail (Etheostoma flabellare), greenside (E. blennioides) and rainbow (E. caeruleum) darters. Ohio J. Sci. 86: 124–129.Google Scholar
  7. Ingersoll, C.G. & D.L. Claussen. 1984. Temperature selection and critical thermal maxima of the fantail darter, Etheostoma flabellare, and the johnny darter, E. nigrum, related to habitat and season. Env. Biol. Fish. 11: 131–138.Google Scholar
  8. Kessler, R.K., A.F. Casper & G.K. Weddle. 1995. Temporal variation in microhabitat use and spatial relations in the benthic fish community of a stream. Amer. Midl. Nat. 134: 361–370.Google Scholar
  9. Kessler, R.K. & J.H. Thorp. 1993. Microhabitat segregation of the threatened spotted darter (Etheostoma maculatum) and closely related orangefin darter (Ebellum) Can. J. Fish. Aquat. Sci. 50: 1084–1091.Google Scholar
  10. Martin, F.D. 1984. Diets of four sympatric species of Etheostoma (Pisces: Percidae) from southern Indiana: interspecific and intraspecific multiple comparisons. Env. Biol. Fish. 11: 113–120.Google Scholar
  11. Matthews, W.J. 1985. Critical current speeds and microhabitats of the benthic fishes Percina roanoka and Etheostoma flabellare. Env. Biol. Fish. 12: 303–308.Google Scholar
  12. Page, L.M. 1978. Redescription, distribution, variation, and life history notes on Percina macrocephala (Percidae). Copeia 1978: 655–664.Google Scholar
  13. Page, L.M. & D.L. Swofford. 1984. Morphological correlates of ecological specialization in darters. Env. Biol. Fish. 11: 139–159.Google Scholar
  14. Paine, M.D., J.J. Dodson & G. Power. 1982. Habitat and food resource partitioning among four species of darters (Percidae: Etheostoma) in a southern Ontario stream. Can. J. Zool. 60: 1635–1641.Google Scholar
  15. Ross, S.T. 1986. Resource partitioning in fish assemblages: a review of field studies. Copeia 1986: 352–388.Google Scholar
  16. Schlosser, I.J. & L.A. Toth. 1984. Niche relationships and population ecology of rainbow (Etheostoma caeruleum) and fantail (E. flabellare) darters in a temporally variable environment. Oikos 42: 229–238.Google Scholar
  17. Simonson, T.D. 1993. Correspondence and relative precision of stream habitat features estimated at two spatial scales. J. Freshw. Eco. 8: 363–373.Google Scholar
  18. Smart, H.J. & J.H. Gee. 1979. Coexistence and resource partitioning in two species of darters (Percidae), Etheostoma nigrum and Percina maculata. Can. J. Zool. 57: 2061–2071.Google Scholar
  19. Stauffer, J.R., J.M. Boltz & L.R. White. 1995. The fishes of West Virginia. Academy of Natural Sciences of Philadelphia, Philadelphia. 389 pp.Google Scholar
  20. Stauffer, J.R., J.M. Boltz, K.A. Kellogg & E.S. van Snik. 1996. Microhabitat partitioning in a diverse assemblage of darters in the Allegheny River system. Env. Biol. Fish. 46: 37–44.Google Scholar
  21. Stiles, R.A. 1972. The comparative ecology of three species of Nothonotus (Percidae: Etheostoma) in Tennessee's Little River. Ph.D. Dissertation, University of Tennessee, Knoxville. 96 pp.Google Scholar
  22. Winn, H.E. 1958. Comparative reproductive behavior and ecology of fourteen species of darters (Pisces-Percidae). Ecol. Monog. 28: 155–191.Google Scholar

References cited

  1. Amorim, M.C.P.D. 1996. Sound production in the blue-green damselfish, Chromis viridis (Cuvier, 1830) (Pomacentridae). Bioacoustics 6: 265–272.Google Scholar
  2. Chen, K.-C. & H.-K. Mok. 1988. Sound production in the anemonefishes, Amphiprion clarkii and A. frenatus (Pomacentridae), in captivity. Japan. J. Ichthyol. 35: 90–97.Google Scholar
  3. Claridge, M.F. & J.C. Morgan. 1993. Geographical variation in the acoustic signal of the planthopper, Nilaparvata bakeri (Muir), in Asia: species recognition and sexual selection. Biol. J. Linn. Soc. 48: 267–281.Google Scholar
  4. Ewing. 1989. Arthropod bioacoustics: neurobiology and behaviour. Cornell University Press, Ithaca. 260 pp.Google Scholar
  5. Fay, R.R. & S. Coombs. 1983. Neural mechanisms in sound detection and temporal summation. Hear. Res. 10: 69–92.Google Scholar
  6. Fine, M.L. 1978. Seasonal and geographical variation of the mating call of the oyster toadfish Opsanus tau L. Oecologia 36: 45–57.Google Scholar
  7. Gerald, J.W. 1971. Sound production during courtship in six species of sunfish (Centrarchidae). Evolution 25: 75–87.Google Scholar
  8. Godwin, J. 1995. Phylogenetic and habitat influences on mating system structure in the humbug damselfishes (Dascyllus, Pomacentridae). Bull. Mar. Sci. 57: 637–652.Google Scholar
  9. Grant, B.R. & P.R. Grant. 1989. Evolutionary dynamics of a natural population. Chicago University Press, Chicago. 350 pp.Google Scholar
  10. Ha, S.J. 1973. Aspects of sound communication in the damselfish Eupomacentrus partitus. Ph.D. Thesis, University of Miami, Miami. 78 pp.Google Scholar
  11. Holzberg, S. 1973. Beobachtungen zur Ökologie und zum socialverhalten des Korallenbarsches Dascyllus marginatus Ruppell (Pisces; Pomacentridae). Z. Tierpsychol. 33: 492–513.Google Scholar
  12. Kenyon, T.N. 1994. The significance of sound interception to males of the bicolor damselfish, Pomacentrus partitus, during courtship. Env. Biol. Fish. 40: 391–405.Google Scholar
  13. Lobel, P.S. 1996. Spawning sound of the trunkfish, Ostracion meleagris (Ostraciidae). Biol. Bull. 191: 308–309.Google Scholar
  14. Lobel, P.S. & D.A. Mann. 1995. Spawning sounds of the domino damselfish, Dascyllus albisella (Pomacentridae), and the relationship to male size. Bioacoustics 6: 187–198.Google Scholar
  15. Luh, H.K. & H.K. Mok. 1986. Sound production in the domino damselfish Dascyllus trimaculatus (Pomacentridae) under laboratory conditions. Japan. J. Icthyol. 33: 70–74.Google Scholar
  16. Mann, D.A. & P.S. Lobel. 1995. Passive acoustic detection of sounds produced by the damselfish, Dascyllus albisella (Pomacentridae). Bioacoustics 6: 199–213.Google Scholar
  17. Mann, D.A. & P.S. Lobel. 1997. Propagation of damselfish (Pomacentridae) courtship sounds. J. Acoust. Soc. Amer. 101: 3783–3791.Google Scholar
  18. Morton, E. 1977. On the occurrence and significance of motivation-structural rules in some bird and mammal species. Amer. Nat. 111: 855–869.Google Scholar
  19. Morton, E. & J. Page. 1992. Animal talk. Random House, New York. 275 pp.Google Scholar
  20. Myrberg, A.A., Jr. 1972. Ethology of the bicolor damselfish, Eupomacentrus partitus (Pisces: Pomacentridae): a comparative analysis of laboratory and field behavior. Anim. Behav. Mon. 5: 197–283.Google Scholar
  21. Myrberg, A.A., Jr., E. Kramer & P. Heinecke. 1965. Sound production by cichlid fishes. Science 149: 555–558.Google Scholar
  22. Myrberg, A.A., Jr., M. Mohler & J.D. Catala. 1986. Sound production by males of a coral reef fish (Pomacentrus partitus): its significance to females. Anim. Behav. 34: 913–923.Google Scholar
  23. Myrberg, A.A., Jr., Ha, S.J. & M.J. Shamblott. 1993. The sounds of bicolor damselfish (Pomacentrus partitus): predictors of body size and a spectral basis for individual recognition and assessment. J. Acoust. Soc. Amer. 94: 3067–3070.Google Scholar
  24. Nelissen, M.H.J. 1977. Sound production by Haplochromis burtoni (Gunther) and Tropheus boulenger (Pisces, Cichlidae). Annales Soc. R. Zool. Belg. 106: 155–166.Google Scholar
  25. Nelissen, M.H.J. 1978. Sound production by some Tanganyikan cichlid fishes and a hypothesis for the evolution of their communication mechanisms. Behav. 64: 137–147.Google Scholar
  26. Randall, H.A. & G.R. Allen. 1977. A revision of the damselfish genus Dascyllus (Pomacentridae) with the description of a new species. Records of the Australian Museum 31: 349–385.Google Scholar
  27. Randall, J.E., P.S. Lobel & E.H. Chave. 1985. Annotated checklist of the fishes of Johnston Island. Pac. Sci. 39: 24–80.Google Scholar
  28. Ryan, M.J. & A.S. Rand. 1993. Species recognition and sexual selection as a unitary problem in animal communication. Evolution 47: 647–657.Google Scholar
  29. Spanier, E. 1970. Analysis of sounds and associated behavior of the domino damselfish Dascyllus trimaculatus (Ruppell, 1828) (Pomacentridae). M.Sc. Thesis, Tel-Aviv University, Tel-Aviv. 80 pp.Google Scholar
  30. Spanier, E. 1979. Aspects of species recognition by sound in four species of damselfishes, genus Eupomacentrus (Pisces: Pomacentridae). Z. Tierpsychol. 51: 301–316.Google Scholar
  31. Wells, M.M. & C.S. Henry. 1992. The role of courtship songs in reproductive isolation among populations of green lacewings of the genus Chrysoperla (Neuroptera: Chrysopidae). Evolution 46: 31–42.Google Scholar
  32. Wilczynski, W.,A. C. Keddy-Hector & M.J. Ryan. 1992. Call patterns and basilar papilla tuning in cricket frogs. I. Differences among populations and between sexes. Brain Behav. Evol. 39: 229–237.Google Scholar

References cited

  1. Agresti, A. 1990. Categorical data analysis. John Wiley & Sons, New York. 558 pp.Google Scholar
  2. Beamish, R.J. 1972. Lethal pH for the white sucker Catostomus commersoni (Lacépède). Trans. Amer. Fish. Soc. 101: 355–358.Google Scholar
  3. Beamish, R.J. 1974. Growth and survival of white suckers (Ca443 tostomus commersoni) in an acidified lake. J. Fish. Res. Board Can. 31: 49–54.Google Scholar
  4. Beamish, R.J. & H.H. Harvey. 1972. Acidification of the La Cloche mountain lakes, Ontario, and resulting fish mortalities. J. Fish. Res. Board Can. 29: 1131–1143.Google Scholar
  5. Becker, C.D. & R.G. Genoway. 1979. Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Env. Biol. Fish. 4: 245–256.Google Scholar
  6. Black, E.C., F.E.J. Fry & V.S. Black. 1954. The influence of carbon dioxide on the utilization of oxygen by some fresh-water fish. Can. J. Zool. 32: 408-420.Google Scholar
  7. Bozek, M.A., L.J. Paulson & G.R. Wilde. 1990. Effects of ambient Lake Mohave temperatures on development, oxygen consumption, and hatching success of the razorback sucker. Env. Biol. Fish. 27: 255–263.Google Scholar
  8. Brett, J.R. 1956. Some principles in the thermal requirements of fishes. Q. Rev. Biol. 31: 75–87.Google Scholar
  9. Bryant, R.T., J.W. Evans, R.E. Jenkins & B.J. Freeman. 1996. The mystery fish. Southern Wildlife 1: 26–35.Google Scholar
  10. Castleberry, D.T. & J.J. Cech, Jr. 1992. Critical thermal maxima and oxygen minima of five fishes from the upper Klamath basin. Calif. Fish and Game 78: 145–152.Google Scholar
  11. Collett, D. 1991. Modelling binary data. Chapman & Hall, New York. 369 pp.Google Scholar
  12. Colt, J. 1984. Computation of dissolved gas concentrations in water as functions of temperature, salinity, and pressure. Amer. Fish. Soc. Spec. Publ. 14, Bethesda. 116 pp.Google Scholar
  13. Davis, J.C. 1975. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. J. Fish. Res. Board Can. 32: 2295–2332.Google Scholar
  14. Dunson, W.A. & J. Travis. 1991. The role of abiotic factors in community organization. Amer. Nat. 138: 1067-1091.Google Scholar
  15. Falter, M.A. & J.J. Cech, Jr. 1991. Maximum pH tolerance of three Klamath basin fishes. Copeia 1991: 1109–1111.Google Scholar
  16. Fraser, G.A. & H.H. Harvey. 1984. Effects of environmental pH on the ionic composition of the white sucker (Catostomus commersoni) and pumpkinseed (Lepomis gibbosus). Can. J. Zool. 62: 249–259.Google Scholar
  17. Fromm, P.O. 1980. A review of some physiological and toxicological responses of freshwater fish to acid stress. Env. Biol. Fish. 5: 79–93.Google Scholar
  18. Fry, F.E.J. 1947. Effects of the environment on animal activity. Univ. Toronto Stud. Biol. Ser. 55, Publ. Ontario Fish. Res. Lab. 68: 5–62.Google Scholar
  19. Fry, F.E.J. 1971. The effect of environmental factors on the physiology of fish. pp. 79-134. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Academic Press, New York.Google Scholar
  20. Hart, B.T., P. Bailey, R. Edwards, K. Hortle, K. James, A. McMahon, C. Meredith & K. Swadling. 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiol. 210: 105–144.Google Scholar
  21. Hobe, H. & B.R. McMahon. 1988. Mechanisms of acid-base and ionoregulation in white suckers (Catostomus commersoni) in natural soft water. II. Exposure to a fluctuating ambient pH regime. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 158: 67–79.Google Scholar
  22. Hobe, H., C.M. Wood & B.R. McMahon. 1984. Mechanisms of acid-base and ionoregulation in white suckers (Catostomus commersoni) in natural soft water. I. Acute exposure to low ambient pH. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 154: 35-46.Google Scholar
  23. Jenkins, R.E. & N.M. Burkhead. 1994. Freshwater fishes of Virginia. American Fisheries Society, Bethesda. 1079 pp.Google Scholar
  24. Kramer, D.L & J.P. Mehegan. 1981. Aquatic surface respiration, an adaptive response to hypoxia in the guppy, Poecilia reticulata (Pisces, Poeciliidae). Env. Biol. Fish. 6: 299–313.Google Scholar
  25. Maceina, M.J., F.G. Nordlie & J.V. Shireman. 1980. The influence of salinity on oxygen consumption and plasma electrolytes in grass carp, Ctenopharyngodon idella Val. J. Fish Biol. 16: 613–619.Google Scholar
  26. McCormick, J.H., B.R. Jones & K.E.F. Hokanson. 1977. White sucker (Catostomus commersoni) embryo development, and early growth and survival at different temperatures. J. Fish. Res. Board Can. 34: 1019–1025.Google Scholar
  27. McCullagh, P. & J.A. Nelder. 1989. Generalized linear models, 2nd edition. Chapman & Hall, New York. 511 pp.Google Scholar
  28. Meldrim, J.W. & J.J. Gift. 1971. Temperature preference, avoidance, and shock experiments with estuarine fishes. Ichthyological Associates Bulletin 7: 1–75.Google Scholar
  29. Miller, R.R., J.D. Williams & J.E. Williams. 1989. Extinctions of North American fishes during the past century. Fisheries 14: 22–38.Google Scholar
  30. Ono, R.D., J.D. Williams & A. Wagner. 1983. Vanishing fishes of North America. Stone Wall Press, Washington, D.C. 257 pp.Google Scholar
  31. Peterson, M.S. 1988. Comparative physiological ecology of centrarchids in hyposaline environments. Can. J. Fish. Aquat. Sci. 45: 827–833.Google Scholar
  32. Peterson, M.S. & M.R. Meador. 1994. Effects of salinity on freshwater fishes in Coastal Plain drainages in the southeastern U.S. Reviews in Fisheries Science 2: 95–121.Google Scholar
  33. Scoppettone, G.G., M.E. Buettner & P.H. Rissler. 1993. Effect of four fluctuating temperature regimes on cui-ui, Chasmistes cujus, survival from egg fertilization to swim-up, and size of larvae produced. Env. Biol. Fish. 38: 373–378.Google Scholar
  34. Smale, M.A. & C.F. Rabeni. 1995a. Hypoxia and hyperthermia tolerances of headwater stream fishes. Trans. Amer. Fish. Soc. 124: 698–710.Google Scholar
  35. Smale, M.A. & C.F. Rabeni. 1995b. Influences of hypoxia and hyperthermia on fish species composition in headwater streams. Trans. Amer. Fish. Soc. 124: 711–725.Google Scholar
  36. Stauffer, J.R., Jr. 1986. Ontogenetic changes in the preferred temperatures of the blackchin tilapia, Sarotherodon melanotheron. Arch. Hydrobiol. 105: 397–402.Google Scholar
  37. Stauffer, J.R., Jr., J.M. Boltz & S.E. Boltz. 1989. Temperature preference of the redbelly tilapia, Oreochromis zilli (Gervais). Arch. Hydrobiol. 114: 453–456.Google Scholar
  38. Trippel, E.A. & H.H. Harvey. 1987. Reproductive responses of five white sucker (Catostomus commersoni) populations in relation to lake acidity. Can. J. Fish. Aquat. Sci. 44: 1018–1023.Google Scholar
  39. Trojnar, J.R. 1977. Egg and larval survival of white suckers (Catostomus commersoni) at low pH. J. Fish. Res. Board Can. 34: 262–266.Google Scholar
  40. Vondracek, B., J.J. Cech, Jr. & D. Longanecker. 1982. Effect of cycling and constant temperatures on the respiratory metabolism of the Tahoe sucker, Catostomus tahoensis (Pisces: Catostomidae). Comp. Biochem. Physiol. 73A: 11–14.Google Scholar
  41. Walker, R.L., P.R.H. Wilkes & C.M. Wood. 1989. The effects of hypersaline exposure on oxygen-affinity of the blood of the freshwater teleost Catostomus commersoni. J. Exp. Biol. 142: 125–142.Google Scholar
  42. Wilkes, P.R.H. & B.R. McMahon. 1986a. Responses of a stenohaline freshwater teleost (Catostomus commersoni) to hypersaline exposure. I. The dependence of plasma pH and bicarbonate concentration on electrolyte regulation. J. Exp. Biol. 121: 77–94.Google Scholar
  43. Wilkes, P.R.H. & B.R. McMahon. 1986b. Responses of a stenohaline freshwater teleost (Catostomus commersoni) to hypersaline exposure. II. Transepithelial flux of sodium, chloride and ‘acidic equivalents’. J. Exp. Biol. 121: 95–113.Google Scholar
  44. Williams, J.E., J.E. Johnson, D.A. Hendrickson, S. Contreras-Balderas, J.D. Williams, M. Navarro-Mendoza, D.E. Mc Allister & J.E. Deacon. 1989. Fishes of North America endangered, threatened, or of special concern: 1989. Fisheries 14: 2–20.Google Scholar

References cited

  1. Barlow, C.C., R. McLoughlin & K. Bock. 1987. Complementary feeding habits of golden perch Macquaria ambigua (Richardson)( Percichthyidae) and silver perch Bidyanus bidyanus (Mitchell)(Teraponidae) in farm dams. Proc. Linn. Soc. N.S.W. 109(3): 143–152.Google Scholar
  2. Bernays, E.A., K.L. Bright, N. Gonzalez & J. Angel. 1994. Dietary mixing in a generalist herbivore: tests of two hypotheses. Ecology 75: 1997–2006.Google Scholar
  3. Bryan, J.E. & P.A. Larkin. 1972. Food specialization by individual trout. J. Fish. Res. Board Can. 29: 1615–1624.Google Scholar
  4. Culver, D.A. & M.C. Geddes. 1993. Limnology of rearing ponds for Australian fish larvae: relationships among water quality, phytoplankton, zooplankton, and the growth of larval fish. Aust. J. Mar. Freshwat. Res. 44: 537–551.Google Scholar
  5. Ehlinger, T.J. & D.S. Wilson. 1988. Complex foraging polymorphism in bluegill sunfish. Proc. Nat. Acad. Sci. USA 85: 1878–1882.Google Scholar
  6. Holling, C.S. 1959. The components of predation as revealed by a study of small-mammal predation on the European sawfly. Can. Ent. 91: 293–320.Google Scholar
  7. Hughes, R.N., M.J. Kaiser, P.A. Mackney & K. Warburton. 1992. Optimizing foraging behaviour through learning. J. Fish Biology 41 (Supplement B): 77–91.Google Scholar
  8. Kieffer, J.D. & P.W. Colgan. 1991. Individual variation in learning by foraging pumpkinseed sunfish, Lepomis gibbosus: the influence of habitat. Anim. Behav. 41: 603–611.Google Scholar
  9. Lavin, P.A. & J.D. McPhail. 1985. The evolution of freshwater diversity in the threespine stickleback (Gasterosteus aculeatus): site-specific differentiation of trophic morphology. Can. J. Zool. 63: 2632–2638.Google Scholar
  10. Lechowicz, M.J. 1982. The sampling characteristics of electivity indices. Oecologia 52: 22–30.Google Scholar
  11. Lobel, P.S. & J.C. Ogden. 1981. Foraging by the herbivorous parrotfish Sparisoma radians. Mar. Biol. 64: 173–183.Google Scholar
  12. Magurran, A. E. 1992. Individual differences and alternative behaviours. pp. 441–477. In: T.J. Pitcher (ed.) Behaviour of Teleost Fishes, Chapman & Hall, London.Google Scholar
  13. Malmquist, H.J., S.S. Snorrason, S. Skulason, B. Jonsson, O.T. Sandlund & P.M. Jonasson. 1992. Diet differentiation in polymorphic Arctic charr in Thingvallavatn, Iceland. J. Anim. Ecol. 61: 21–35.Google Scholar
  14. Merrick, J.R. & G.E. Schmida. 1984. Australian freshwater fishes. Biology and management. Merrick, North Ryde. 409 pp.Google Scholar
  15. Pierotti, R. & C. Annett. 1987. Reproductive consequences of dietary specialization and switching in an ecological generalist. pp. 417-442. In: A.C. Kamil, J.R. Krebs & H.R. Pulliam (ed.) Foraging Behavior, Plenum, New York.Google Scholar
  16. Robinson, B.W., D.S. Wilson & G.O. Shea. 1996. Tradeoffs of ecological specialization: an intraspecific comparison of pumpkinseed sunfish phenotypes. Ecology 77: 170–178.Google Scholar
  17. Rowland, S.J. & C.G. Barlow. 1990. Fish biology. The right prerequisites. Austasia Aquaculture 5: 27–30.Google Scholar
  18. Rowland, S.J. & C. Bryant (ed.). 1995. Silver perch culture. Austasia Aquaculture for New South Wales Fisheries, Sandy Bay. 125 pp.Google Scholar
  19. Skulason, S. & T.B. Smith. 1995. Resource polymorphism in vertebrates. Trends in Ecology & Evolution 10: 366–370.Google Scholar
  20. Werner, E.E., G.G. Mittelbach & D.J. Hall. 1981. The role of foraging profitability and experience in habitat use by the bluegill sunfish. Ecology 62: 116–125.Google Scholar
  21. Wu, L. & D.A. Culver. 1992. Ontogenetic diet shift in Lake Erie age-0 yellow perch: a size-related response to zoooplankton density. Can. J. Fish. Aquat Sci. 49: 1932–1937.Google Scholar

References cited

  1. Arnold, G.P. 1969. A flume for behaviour studies of marine fish. J. exp. Biol. 51: 671–679.Google Scholar
  2. Arnold, G. P. & D. Weihs. 1978. The hydrodynamics of rheotaxis in the plaice (Pleuronectes platessa). J. exp. Biol. 75: 147–169.Google Scholar
  3. Arnold, G.P., P.W. Webb & B.H. Holford. 1991. The role of pectoral fins in station-holding of Atlantic salmon parr (Salmo salar L.). J. exp. Biol. 156: 625–629.Google Scholar
  4. Arnold, G.P., M. Greer Walker, L.S. Emerson & B.H. Holford. 1994. Movements of cod (Gadus morhua L.) in relation to the tidal streams in the southern North Sea. ICES J. mar. Sci. 51: 207–232.Google Scholar
  5. Brett, J.R. & T.D.D. Groves. 1979. Physiological energetics. pp. 279–352. In: W.S. Hoar, D.J. Randall & J.R. Brett (ed.) Fish Physiology, Volume 8, Academic Press, New York.Google Scholar
  6. Cook, P. H. 1985. The behavior of the plaice (Pleuronectes platessa L.) in relation to bottom currents and sediment type. Ph.D. Thesis, University of East Anglia, Norwich. 165 pp.Google Scholar
  7. Diana, J. S. 1995. Biology and ecology of fishes. Cooper Publ. Corp., Carmel. 441 pp.Google Scholar
  8. Dyer, K. R. 1986. Coastal and estuarine sediment dynamics. John Wiley and Sons, Chichester. 342 pp.Google Scholar
  9. Facey, D.E. & G.D. Grossman. 1990. The metabolic cost of maintaining position for four North American stream fishes: effects of season and velocity. Physiological Zoology 63: 757–776.Google Scholar
  10. Fausch, K.D. 1984. Profitable stream positions for salmonids: relating specific growth rate to net energy gain. Can. J. Zool. 62: 441–451.Google Scholar
  11. Gerstner, C.L. & P.W. Webb. 1998. The station-holding performance of plaice, Pleuronectes platessa, on artificial substratum ripples. Can. J. Zool. (in press).Google Scholar
  12. Lough, R.G., P.C. Valentine, D.C. Potter, P.J. Auditore, G.R. Bolz, J.D. Neilson & R.I. Perry. 1989. Ecology and distribution of juvenile cod and haddock in relation to sediment type and bottom currents on eastern Georges Bank. Mar. Ecol. Prog. Ser. 56: 1–12.Google Scholar
  13. Probst, W.E., C.F. Rabeni, W.G. Covington & R.E. Marteney. 1984. Resource use by stream-dwelling rock bass and smallmouth bass. Trans. Amer. Fish. Soc. 112: 283–294.Google Scholar
  14. Rankin, E.T. 1986. Habitat selection by smallmouth bass in response to physical characteristics in a natural stream. Trans. Amer. Fish. Soc. 115: 322–334.Google Scholar
  15. Scott, J.S. 1982. Selection of bottom type by groundfishes of the Scotian Shelf. Can. J. Fish. Aquat. Sci. 39: 943–947.Google Scholar
  16. Shtaf, L.G, D.S. Pavlov, M.A. Skorobogativ & A.S. Baryekian. 1983. Fish behavior as affected by the degree of flow turbulence. Voprosy ikhtiologii 3: 314–321. (in Russian).Google Scholar
  17. Videler, J.J. & D. Weihs. 1982. Energetic advantages of burstand-coast swimming of fish at high speed. J. exp. Biol. 97: 169–178.Google Scholar
  18. Webb, P.W. 1989. Station-holding by three species of benthic fishes. J. exp. Biol. 145: 303–320.Google Scholar
  19. Weihs, D. 1974. The energetic advantages of burst swimming. J. theor. Biol. 49: 215–229.Google Scholar

References

  1. Frank, K.T. & W.C. Leggett. 1994. Fisheries ecology in the context of ecological and evolutionary theory. Ann. Rev. Ecol. Syst. 25: 401–422.Google Scholar
  2. Haldane, J.B.S. 1953. Animal populations and their regulation. New Biol. 15: 9–24.Google Scholar
  3. Larkin, P.A. 1978. Fisheries management - an essay for ecologists. Ann. Rev. Ecol. Syst. 9: 57-73.Google Scholar
  4. Magnuson, J.J. 1991. Fish and fisheries ecology. Ecol. App. 1: 13–26.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Francisco L. Tejerina-Garro
    • 1
  • Réjean Fortin
    • 1
  • Marco A. Rodríguez
    • 2
  1. 1.Département des sciences biologiquesUniversité du Québec à MontréalMontréalCanada
  2. 2.Centro de Biologia Aquática, Departamento de BiologiaUniversidade Católica de GoiásGoiânia, GoiásBrasil

Personalised recommendations