Advertisement

Letters in Mathematical Physics

, Volume 41, Issue 3, pp 255–264 | Cite as

Hecke Symmetries and Characteristic Relations on Reflection Equation Algebras

  • D. I. Gurevich
  • P. N. Pyatov
  • P. A. Saponov
Article

Abstract

We analyze the relation between the properties of Hecke symmetry (i.e., Hecke type R-matrix) and the algebraic structure of the corresponding reflection equation (RE) algebra. Analogues of the Newton relations and Cayley–Hamilton theorem for the matrix of generators of the RE algebra associated with a finite rank even Hecke symmetry are derived.

Hecke symmetry reflection algebra Newton relations Cayley–Hamilton theorem. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cherednik, I. V.: Teoret. Mat. Fiz. 61 (1984), 35 (in Russian).Google Scholar
  2. 2.
    Kulish, P. P. and Sklyanin, E. K.: J. Phys. A: Math. Gen. 25 (1992), 5663; Kulish, P. P. and Sasaki, R.: Prog. Theoret. Phys. 89 (1993), 741–761.Google Scholar
  3. 3.
    Reshetikhin, N. Yu. and Semenov-Tian-Shansky, M. A.: Quantum current algebras, Lett. Math. Phys. 19 (1990), 133; Majid, S.: Braided groups, in: Quantum Groups, Lecture Notes in Math. 1510, Springer-Verlag, New York, 1992, p. 79; J. Math. Phys 32 (1991), 3246; ibid. 34 (1993), 2045; Jurčo, B.: Quantum group differential geometry, Lett. Math. Phys. 22 (1991), 177; Alekseev, A. Yu. and Faddeev, L. D.: Comm. Math. Phys. 141 (1991), 413; Schupp, P.,Watts, P. and Zumino, B.: Lett. Math. Phys. 25 (1992), 139-147; Comm. Math. Phys. 157 (1993), 305; Isaev, A. P. and Pyatov, P. N.: J. Phys. A: Math. Gen. 28 (1995), 2227–2246; Faddeev, L. D. and Pyatov, P. N.: Trans. Amer. Math. Soc. Ser. 2 175 (1996), 35–47. Kulish, P. P.: q-Minkowski space-time, Algebra Anal. 6 (1994), 195.Google Scholar
  4. 4.
    Drinfeld, V. G.: Algebra Anal. 1(2) (1989), 30–46; Majid, S., in: M.-L. Ge and H. J. de Vega (eds), Quantum Groups, Integrable Statistical Models and Knot Theory, World Scientific, Singapore, 1993, p. 231.Google Scholar
  5. 5.
    Pyatov, P. N. and Saponov, P. A.: J. Phys. A: Math. Gen. 28 (1995), 4415–4421.Google Scholar
  6. 6.
    Nazarov, M. and Tarasov, V.: Publ. RIMS 30 (1994), 459.Google Scholar
  7. 7.
    Gurevich, D.I.: Algebra Anal. 2 (1990), 119–148 (in Russian); English translation in Leningrad Math. J. 2 (1991), 801–828.Google Scholar
  8. 8.
    Lankaster, P.: Theory of Matrices, Academic Press, New York, London, 1969.Google Scholar
  9. 9.
    Faddeev, L. D., Reshetikhin, N. Yu. and Takhtajan, L. A.: Algebra Anal. 1 (1989), 178–206 (in Russian); English translation in Leningrad Math. J. 1 (1990), 193.Google Scholar
  10. 10.
    Reshetikhin, N. Yu.: Algebra Anal. 1 (1989), 169 (in Russian); English translation in it Leningrad Math. J. 1 (1990), 491.Google Scholar
  11. 11.
    Wenzl, H.: Invent. Math. 92(2) (1988), 349.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • D. I. Gurevich
    • 1
  • P. N. Pyatov
    • 2
  • P. A. Saponov
    • 3
  1. 1.ISTV, Université de ValenciennesValenciennesFrance
  2. 2.Bogoliubov Laboratory of Theoretical Physics, JINRDubna, Moscow RegionRussia
  3. 3.Theory Department, IHEPProtvino, Koscow RegionRussia

Personalised recommendations