Advertisement

Letters in Mathematical Physics

, Volume 39, Issue 1, pp 69–79 | Cite as

Noncommutative Geometry and Integrable Models

  • Aristophanes Dimakis
  • Folkert MÜller-Hoissen
Article

Abstract

A construction of conservation laws for σ-models in two dimensions is generalized in the framework of noncommutative geometry of commutative algebras. This is done by replacing theordinary calculus of differential forms with other differentialcalculi and introducing an analogue of the Hodge operator on thelatter. The general method is illustrated with several examples.

completely integrable models noncommutative geometry. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dimakis, A. and Müller-Hoissen, F.: Integrable discretizations of chiral models via deformation of the differential calculus, Preprint, hep-th/9512007.Google Scholar
  2. 2.
    Dimakis, A., Müller-Hoissen, F. and Striker, T.: From continuum to lattice theory via deformation of the differential calculus, Phys. Lett. B 300(1993), 141; Noncommutative differential calculus and lattice gauge theory, J. Phys. A 26(1993), 1927; Dimakis, A. and Müller-Hoissen, F.: Quantum mechanics on a lattice and q-deformations, Phys. Lett. B 295(1992), 242.Google Scholar
  3. 3.
    Brezin, E., Itzykson, C., Zinn-Justin, J. and Zuber, J.-B.: Remarks about the existence of nonlocal charges in two-dimensional models, Phys. Lett. B 82(1979), 442.Google Scholar
  4. 4.
    Dimakis, A. and Müller-Hoissen, F.: Stochastic differential calculus, the Moyal *-product, and noncommutative geometry, Lett. Math. Phys. 28(1993), 123.Google Scholar
  5. 5.
    Baehr, H. C., Dimakis, A., and Müller-Hoissen, F.: Differential calculi on commutative algebras, J. Phys. A 28(1995), 3197.Google Scholar
  6. 6.
    Toda, M.: Theory of Nonlinear Lattices, Springer, Berlin, 1989.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Aristophanes Dimakis
    • 1
  • Folkert MÜller-Hoissen
    • 1
  1. 1.Institut für Theoretische PhysikGöttingenGermany

Personalised recommendations